Not enough data to create a plot.
Try a different view from the menu above.
Overview
Decision-aware learning for geographical districting
Districting is a complex combinatorial problem that consists in partitioning a geographical area into small districts. In logistics, it is a major strategic decision determining operating costs for several years. Solving districting problems using traditional methods is intractable even for small geographical areas and existing heuristics often provide sub-optimal results. We present a structured learning approach to find high-quality solutions to real-world districting problems in a few minutes. It is based on integrating a combinatorial optimization layer, the capacitated minimum spanning tree problem, into a graph neural network architecture. To train this pipeline in a decision-aware fashion, we show how to construct target solutions embedded in a suitable space and learn from target solutions. Experiments show that our approach outperforms existing methods as it can significantly reduce costs on real-world cities.
Slice-100K: A Multimodal Dataset for Extrusion-based 3D Printing Kelly O. Marshall
G-code (Geometric code) or RS-274 is the most widely used computer numerical control (CNC) and 3D printing programming language. G-code provides machine instructions for the movement of the 3D printer, especially for the nozzle, stage, and extrusion of material for extrusion-based additive manufacturing. Currently, there does not exist a large repository of curated CAD models along with their corresponding G-code files for additive manufacturing. To address this issue, we present Slice-100K, a first-of-its-kind dataset of over 100,000 G-code files, along with their tessellated CAD model, LVIS (Large Vocabulary Instance Segmentation) categories, geometric properties, and renderings. We build our dataset from triangulated meshes derived from Objaverse-XL and Thingi10K datasets. We demonstrate the utility of this dataset by finetuning GPT-2 on a subset of the dataset for G-code translation from a legacy G-code format (Sailfish) to a more modern, widely used format (Marlin). Our dataset can be found here. Slice-100K will be the first step in developing a multimodal foundation model for digital manufacturing.
Sample Selection via Contrastive Fragmentation for Noisy Label Regression Chris Dongjoo Kim 1,2 Dongyeon Woo
As with many other problems, real-world regression is plagued by the presence of noisy labels, an inevitable issue that demands our attention. Fortunately, much real-world data often exhibits an intrinsic property of continuously ordered correlations between labels and features, where data points with similar labels are also represented with closely related features. In response, we propose a novel approach named ConFrag, where we collectively model the regression data by transforming them into disjoint yet contrasting fragmentation pairs. This enables the training of more distinctive representations, enhancing the ability to select clean samples. Our ConFrag framework leverages a mixture of neighboring fragments to discern noisy labels through neighborhood agreement among expert feature extractors. We extensively perform experiments on six newly curated benchmark datasets of diverse domains, including age prediction, price prediction, and music production year estimation. We also introduce a metric called Error Residual Ratio (ERR) to better account for varying degrees of label noise. Our approach consistently outperforms fourteen state-of-the-art baselines, being robust against symmetric and random Gaussian label noise.
Pairwise Causality Guided Transformers for Event Sequences
Although pairwise causal relations have been extensively studied in observational longitudinal analyses across many disciplines, incorporating knowledge of causal pairs into deep learning models for temporal event sequences remains largely unexplored. In this paper, we propose a novel approach for enhancing the performance of transformer-based models in multivariate event sequences by injecting pairwise qualitative causal knowledge such as'event Z amplifies future occurrences of event Y'. We establish a new framework for causal inference in temporal event sequences using a transformer architecture, providing a theoretical justification for our approach, and show how to obtain unbiased estimates of the proposed measure. Experimental results demonstrate that our approach outperforms several state-of-the-art models in terms of prediction accuracy by effectively leveraging knowledge about causal pairs. We also consider a unique application where we extract knowledge around sequences of societal events by generating them from a large language model, and demonstrate how a causal knowledge graph can help with event prediction in such sequences. Overall, our framework offers a practical means of improving the performance of transformer-based models in multivariate event sequences by explicitly exploiting pairwise causal information.
Transductive Active Learning: Theory and Applications Bhavya Sukhija Department of Computer Science Department of Computer Science ETH Zรผrich, Switzerland ETH Zรผrich, Switzerland Lenart Treven
We study a generalization of classical active learning to real-world settings with concrete prediction targets where sampling is restricted to an accessible region of the domain, while prediction targets may lie outside this region. We analyze a family of decision rules that sample adaptively to minimize uncertainty about prediction targets. We are the first to show, under general regularity assumptions, that such decision rules converge uniformly to the smallest possible uncertainty obtainable from the accessible data. We demonstrate their strong sample efficiency in two key applications: active fine-tuning of large neural networks and safe Bayesian optimization, where they achieve state-of-the-art performance.
Can Language Models Perform Robust Reasoning in Chain-of-thought Prompting with Noisy Rationales?
This paper investigates an under-explored challenge in large language models (LLMs): chain-of-thought prompting with noisy rationales, which include irrelevant or inaccurate reasoning thoughts within examples used for in-context learning. We construct NoRa dataset that is tailored to evaluate the robustness of reasoning in the presence of noisy rationales. Our findings on NoRa dataset reveal a prevalent vulnerability to such noise among current LLMs, with existing robust methods like self-correction and self-consistency showing limited efficacy. Notably, compared to prompting with clean rationales, GPT-3.5 drops by 1.4%-19.8% in accuracy with irrelevant thoughts and more drastically by 2.2%-40.4% with inaccurate thoughts. Addressing this challenge necessitates external supervision that should be accessible in practice. Here, we propose the method of contrastive denoising with noisy chain-of-thought (CD-CoT). It enhances LLMs' denoising-reasoning capabilities by contrasting noisy rationales with only one clean rationale, which can be the minimal requirement for denoising-purpose prompting. This method follows a principle of exploration and exploitation: (1) rephrasing and selecting rationales in the input space to achieve explicit denoising and (2) exploring diverse reasoning paths and voting on answers in the output space. Empirically, CD-CoT demonstrates an average improvement of 17.8% in accuracy over the base model and shows significantly stronger denoising capabilities than baseline methods.
Pgx: Hardware-Accelerated Parallel Game Simulators for Reinforcement Learning
We propose Pgx, a suite of board game reinforcement learning (RL) environments written in JAX and optimized for GPU/TPU accelerators. By leveraging JAX's auto-vectorization and parallelization over accelerators, Pgx can efficiently scale to thousands of simultaneous simulations over accelerators. In our experiments on a DGX-A100 workstation, we discovered that Pgx can simulate RL environments 10-100x faster than existing implementations available in Python. Pgx includes RL environments commonly used as benchmarks in RL research, such as backgammon, chess, shogi, and Go. Additionally, Pgx offers miniature game sets and baseline models to facilitate rapid research cycles. We demonstrate the efficient training of the Gumbel AlphaZero algorithm with Pgx environments. Overall, Pgx provides high-performance environment simulators for researchers to accelerate their RL experiments. Pgx is available at https://github.com/sotetsuk/pgx.
Learning General World Models in a Handful of Reward-Free Deployments Aldo Pacchiano
Building generally capable agents is a grand challenge for deep reinforcement learning (RL). To approach this challenge practically, we outline two key desiderata: 1) to facilitate generalization, exploration should be task agnostic; 2) to facilitate scalability, exploration policies should collect large quantities of data without costly centralized retraining. Combining these two properties, we introduce the reward-free deployment efficiency setting, a new paradigm for RL research.