Goto

Collaborating Authors

 taxnodes:Technology: Overviews


Hardness in Markov Decision Processes: Theory and Practice

Neural Information Processing Systems

Meticulously analysing the empirical strengths and weaknesses of reinforcement learning methods in hard (challenging) environments is essential to inspire innovations and assess progress in the field. In tabular reinforcement learning, there is no well-established standard selection of environments to conduct such analysis, which is partially due to the lack of a widespread understanding of the rich theory of hardness of environments. The goal of this paper is to unlock the practical usefulness of this theory through four main contributions. First, we present a systematic survey of the theory of hardness, which also identifies promising research directions. Second, we introduce Colosseum, a pioneering package that enables empirical hardness analysis and implements a principled benchmark composed of environments that are diverse with respect to different measures of hardness. Third, we present an empirical analysis that provides new insights into computable measures. Finally, we benchmark five tabular agents in our newly proposed benchmark. While advancing the theoretical understanding of hardness in non-tabular reinforcement learning remains essential, our contributions in the tabular setting are intended as solid steps towards a principled non-tabular benchmark. Accordingly, we benchmark four agents in non-tabular versions of Colosseum environments, obtaining results that demonstrate the generality of tabular hardness measures.



Learning Non-Convergent Non-Persistent Short-Run MCMC Toward Energy-Based Model

Neural Information Processing Systems

This paper studies a curious phenomenon in learning energy-based model (EBM) using MCMC. In each learning iteration, we generate synthesized examples by running a non-convergent, non-mixing, and non-persistent short-run MCMC toward the current model, always starting from the same initial distribution such as uniform noise distribution, and always running a fixed number of MCMC steps. After generating synthesized examples, we then update the model parameters according to the maximum likelihood learning gradient, as if the synthesized examples are fair samples from the current model. We treat this non-convergent short-run MCMC as a learned generator model or a flow model. We provide arguments for treating the learned non-convergent short-run MCMC as a valid model. We show that the learned short-run MCMC is capable of generating realistic images. More interestingly, unlike traditional EBM or MCMC, the learned short-run MCMC is capable of reconstructing observed images and interpolating between images, like generator or flow models. The code can be found in the Appendix.


Optimization Algorithm Design via Electric Circuits

Neural Information Processing Systems

We present a novel methodology for convex optimization algorithm design using ideas from electric RLC circuits. Given an optimization problem, the first stage of the methodology is to design an appropriate electric circuit whose continuoustime dynamics converge to the solution of the optimization problem at hand. Then, the second stage is an automated, computer-assisted discretization of the continuous-time dynamics, yielding a provably convergent discrete-time algorithm. Our methodology recovers many classical (distributed) optimization algorithms and enables users to quickly design and explore a wide range of new algorithms with convergence guarantees.


Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems

arXiv.org Machine Learning

Gaussian process state-space models (GPSSMs) have emerged as a powerful framework for modeling dynamical systems, offering interpretable uncertainty quantification and inherent regularization. However, existing GPSSMs face significant challenges in handling high-dimensional, non-stationary systems due to computational inefficiencies, limited scalability, and restrictive stationarity assumptions. In this paper, we propose an efficient transformed Gaussian process state-space model (ETGPSSM) to address these limitations. Our approach leverages a single shared Gaussian process (GP) combined with normalizing flows and Bayesian neural networks, enabling efficient modeling of complex, high-dimensional state transitions while preserving scalability. To address the lack of closed-form expressions for the implicit process in the transformed GP, we follow its generative process and introduce an efficient variational inference algorithm, aided by the ensemble Kalman filter (EnKF), to enable computationally tractable learning and inference. Extensive empirical evaluations on synthetic and real-world datasets demonstrate the superior performance of our ETGPSSM in system dynamics learning, high-dimensional state estimation, and time-series forecasting, outperforming existing GPSSMs and neural network-based methods in both accuracy and computational efficiency.


Strategic Prompt Pricing for AIGC Services: A User-Centric Approach

arXiv.org Artificial Intelligence

The rapid growth of AI-generated content (AIGC) services has created an urgent need for effective prompt pricing strategies, yet current approaches overlook users' strategic two-step decision-making process in selecting and utilizing generative AI models. This oversight creates two key technical challenges: quantifying the relationship between user prompt capabilities and generation outcomes, and optimizing platform payoff while accounting for heterogeneous user behaviors. We address these challenges by introducing prompt ambiguity, a theoretical framework that captures users' varying abilities in prompt engineering, and developing an Optimal Prompt Pricing (OPP) algorithm. Our analysis reveals a counterintuitive insight: users with higher prompt ambiguity (i.e., lower capability) exhibit non-monotonic prompt usage patterns, first increasing then decreasing with ambiguity levels, reflecting complex changes in marginal utility. Experimental evaluation using a character-level GPT-like model demonstrates that our OPP algorithm achieves up to 31.72% improvement in platform payoff compared to existing pricing mechanisms, validating the importance of user-centric prompt pricing in AIGC services.


A Study on Neuro-Symbolic Artificial Intelligence: Healthcare Perspectives

arXiv.org Artificial Intelligence

Over the last few decades, Artificial Intelligence (AI) scientists have been conducting investigations to attain human-level performance by a machine in accomplishing a cognitive task. Within machine learning, the ultimate aspiration is to attain Artificial General Intelligence (AGI) through a machine. This pursuit has led to the exploration of two distinct AI paradigms. Symbolic AI, also known as classical or GOFAI (Good Old-Fashioned AI) and Connectionist (Sub-symbolic) AI, represented by Neural Systems, are two mutually exclusive paradigms. Symbolic AI excels in reasoning, explainability, and knowledge representation but faces challenges in processing complex real-world data with noise. Conversely, deep learning (Black-Box systems) research breakthroughs in neural networks are notable, yet they lack reasoning and interpretability. Neuro-symbolic AI (NeSy), an emerging area of AI research, attempts to bridge this gap by integrating logical reasoning into neural networks, enabling them to learn and reason with symbolic representations. While a long path, this strategy has made significant progress towards achieving common sense reasoning by systems. This article conducts an extensive review of over 977 studies from prominent scientific databases (DBLP, ACL, IEEExplore, Scopus, PubMed, ICML, ICLR), thoroughly examining the multifaceted capabilities of Neuro-Symbolic AI, with a particular focus on its healthcare applications, particularly in drug discovery, and Protein engineering research. The survey addresses vital themes, including reasoning, explainability, integration strategies, 41 healthcare-related use cases, benchmarking, datasets, current approach limitations from both healthcare and broader perspectives, and proposed novel approaches for future experiments.


DiffGED: Computing Graph Edit Distance via Diffusion-based Graph Matching

arXiv.org Artificial Intelligence

The Graph Edit Distance (GED) problem, which aims to compute the minimum number of edit operations required to transform one graph into another, is a fundamental challenge in graph analysis with wide-ranging applications. However, due to its NP-hard nature, traditional A* approaches often suffer from scalability issue, making them computationally intractable for large graphs. Many recent deep learning frameworks address GED by formulating it as a regression task, which, while efficient, fails to recover the edit path -- a central interest in GED. Furthermore, recent hybrid approaches that combine deep learning with traditional methods to recover the edit path often yield poor solution quality. These methods also struggle to generate candidate solutions in parallel, resulting in increased running times.In this paper, we present a novel approach, DiffGED, that leverages generative diffusion model to solve GED and recover the corresponding edit path. Specifically, we first generate multiple diverse node matching matrices in parallel through a diffusion-based graph matching model. Next, node mappings are extracted from each generated matching matrices in parallel, and each extracted node mapping can be simply transformed into an edit path. Benefiting from the generative diversity provided by the diffusion model, DiffGED is less likely to fall into local sub-optimal solutions, thereby achieving superior overall solution quality close to the exact solution. Experimental results on real-world datasets demonstrate that DiffGED can generate multiple diverse edit paths with exceptionally high accuracy comparable to exact solutions while maintaining a running time shorter than most of hybrid approaches.


Mind with Eyes: from Language Reasoning to Multimodal Reasoning

arXiv.org Artificial Intelligence

Language models have recently advanced into the realm of reasoning, yet it is through multimodal reasoning that we can fully unlock the potential to achieve more comprehensive, human-like cognitive capabilities. This survey provides a systematic overview of the recent multimodal reasoning approaches, categorizing them into two levels: language-centric multimodal reasoning and collaborative multimodal reasoning. The former encompasses one-pass visual perception and active visual perception, where vision primarily serves a supporting role in language reasoning. The latter involves action generation and state update within reasoning process, enabling a more dynamic interaction between modalities. Furthermore, we analyze the technical evolution of these methods, discuss their inherent challenges, and introduce key benchmark tasks and evaluation metrics for assessing multimodal reasoning performance. Finally, we provide insights into future research directions from the following two perspectives: (i) from visual-language reasoning to omnimodal reasoning and (ii) from multimodal reasoning to multimodal agents. This survey aims to provide a structured overview that will inspire further advancements in multimodal reasoning research.


Sun-Shine: A Large Language Model for Tibetan Culture

arXiv.org Artificial Intelligence

Tibetan, a minority language in China, features a highly intricate grammatical structure, characterized by four verb tenses and a tense system with frequent irregularities, contributing to its extensive inflectional diversity. Recently, advances in Large Language Models (LLMs) have transformed the paradigm in many domains. Despite the success in other fields, current LLMs often fall short in catering to the needs of domain experts like Tibetans, and the potential of LLMs for Tibetan culture is under-explored. The intrinsic reasons are the immense and intricate nature of Tibetan culture as well as the necessity for higher granularity and richness in knowledge. Simultaneously, the complexity and uniqueness of its grammatical structure, coupled with its status as a minority ethnic language, contribute to data scarcity, which remains a fundamental challenge. To alleviate these issues, we introduce Llama-Sunshine (Sun-Shine), the first large language model for Tibetan culture, which is expert in various Tibetan language processing tasks. Sun-Shine incorporates state-of-the-art model architectures optimized for Tibetan's linguistic features. We also propose TIB-STC, a comprehensive dataset comprising diverse Tibetan texts such as literature, religious scripts, news, and conversational data, which is also the first large-scale dataset for Tibetan culture. Though comprehensive experiments, Sun-Shine not only demonstrates a higher level of knowledge expertise for Tibetan culture but also gains preliminary embodied intelligence capabilities in Tibetan language processing tasks, like language modeling, text classification, machine translation, and syntactic analysis. Moreover, it excels in low-resource scenarios, showcasing strong generalization capabilities.