Goto

Collaborating Authors

 taxnodes:Technology: Overviews


Occam's Razor

Neural Information Processing Systems

The Bayesian paradigm apparently only sometimes gives rise to Occam's Razor; at other times very large models perform well. We give simple examples of both kinds of behaviour. The two views are reconciled when measuring complexity of functions, rather than of the machinery used to implement them. We analyze the complexity of functions for some linear in the parameter models that are equivalent to Gaussian Processes, and always find Occam's Razor at work. 1 Introduction Occam's Razor is a well known principle of "parsimony of explanations" which is influential inscientific thinking in general and in problems of statistical inference in particular. In this paper we review its consequences for Bayesian statistical models, where its behaviour can be easily demonstrated and quantified.




Pedagogical Agent Research at CARTE

AI Magazine

This article gives an overview of current research on animated pedagogical agents at the Center for Advanced Research in Technology for Education (CARTE) at the University of Southern California/Information Sciences Institute. Animated pedagogical agents, nicknamed guidebots, interact with learners to help keep learning activities on track. At CARTE, we have been developing guidebots that help learners acquire a variety of problem-solving skills in virtual worlds, in multimedia environments, and on the web. We are also developing technologies for creating interactive pedagogical dramas populated with guidebots and other autonomous animated characters.


Introduction to the Special Issue on Intelligent User Interfaces

AI Magazine

Recent years have witnessed significant progress in intelligent user interfaces. Emerging from the intersection of AI and human-computer interaction, research on intelligent user interfaces is experiencing a renaissance, both in the overall level of activity and in raw research achievements. Because intelligent user interfaces are designed to facilitate problem-solving activities where reasoning is shared between users and the machine, they are currently transitioning from the laboratory to applications in the workplace, home, and classroom.


Pedagogical Agent Research at CARTE

AI Magazine

This article gives an overview of current research on animated pedagogical agents at the Center for Advanced Research in Technology for Education (CARTE) at the University of Southern California/Information Sciences Institute. Animated pedagogical agents, nicknamed guidebots, interact with learners to help keep learning activities on track. They combine the pedagogical expertise of intelligent tutoring systems with the interpersonal interaction capabilities of embodied conversational characters. They can support the acquisition of team skills as well as skills performed alone by individuals. At CARTE, we have been developing guidebots that help learners acquire a variety of problem-solving skills in virtual worlds, in multimedia environments, and on the web. We are also developing technologies for creating interactive pedagogical dramas populated with guidebots and other autonomous animated characters.


TALplanner: A Temporal Logic-Based Planner

AI Magazine

TALplanner is a forward-chaining planner that utilizes domain-dependent knowledge to control search in the state space generated by action invocation. The domain-dependent control knowledge, background knowledge, plans, and goals are all represented using formulas in a temporal logic called tal, which has been developed independently as a formalism for specifying agent narratives and reasoning about them. In the Fifth International Artificial Intelligence Planning and Scheduling Conference planning competition, TALplanner exhibited impressive performance, winning the Outstanding Performance Award in the Domain-Dependent Planning Competition.


TALplanner: A Temporal Logic-Based Planner

AI Magazine

TALplanner is a forward-chaining planner that utilizes domain-dependent knowledge to control search in the state space generated by action invocation. The domain-dependent control knowledge, background knowledge, plans, and goals are all represented using formulas in a temporal logic called tal, which has been developed independently as a formalism for specifying agent narratives and reasoning about them. In the Fifth International Artificial Intelligence Planning and Scheduling Conference planning competition, TALplanner exhibited impressive performance, winning the Outstanding Performance Award in the Domain-Dependent Planning Competition. In this article, we provide an overview of TALplanner


AIPS 2000 Planning Competition: The Fifth International Conference on Artificial Intelligence Planning and Scheduling Systems

AI Magazine

The planning competition has become a regular part of the biennial Artificial Intelligence Planning and Scheduling (AIPS) conferences. AIPS'98 featured the very first competition, and for AIPS'00, we built on this foundation to run the second competition. The 2000 competition featured a much larger group of participants and a wide variety of different approaches to planning. Some of these approaches were refinements of known techniques, and others were quite different from anything that had been tried before. Besides the dramatic increase in participation, the 2000 competition demonstrated that planning technology has taken a giant leap forward in performance since 1998. The 2000 competition featured planning systems that were orders of magnitude faster than the planners of just two years prior. This article presents an overview of the competition and reviews the main results.


Goal Recognition through Goal Graph Analysis

Journal of Artificial Intelligence Research

We present a novel approach to goal recognition based on a two-stage paradigm of graph construction and analysis. First, a graph structure called a Goal Graph is constructed to represent the observed actions, the state of the world, and the achieved goals as well as various connections between these nodes at consecutive time steps. Then, the Goal Graph is analysed at each time step to recognise those partially or fully achieved goals that are consistent with the actions observed so far. The Goal Graph analysis also reveals valid plans for the recognised goals or part of these goals. Our approach to goal recognition does not need a plan library. It does not suffer from the problems in the acquisition and hand-coding of large plan libraries, neither does it have the problems in searching the plan space of exponential size. We describe two algorithms for Goal Graph construction and analysis in this paradigm. These algorithms are both provably sound, polynomial-time, and polynomial-space. The number of goals recognised by our algorithms is usually very small after a sequence of observed actions has been processed. Thus the sequence of observed actions is well explained by the recognised goals with little ambiguity. We have evaluated these algorithms in the UNIX domain, in which excellent performance has been achieved in terms of accuracy, efficiency, and scalability.