Not enough data to create a plot.
Try a different view from the menu above.
taxnodes:Technology: Overviews
AAAI 2002 Fall Symposium Series Reports
Bell, Benjamin, Canamero, Lola D., Coradeschi, Silvia, Gomes, Carla, Saffiotti, Alessandro, Tsatsoulis, Costas, Walsh, Toby
The Association for the Advancement of Artificial Intelligence held its 2001 Fall Symposium Series November 2-4, 2001 at the Sea Crest Conference Center in North Falmouth, Massachusetts. The topics of the five symposia in the 2001 Fall Symposia Series were (1) Anchoring Symbols to Sensor Data in Single and Multiple Robot Systems, (2) Emotional and Intelligent II: The Tangled Knot of Social Cognition, (3) Intent Inference for Collaborative Tasks, (4) Negotiation Methods for Autonomous Cooperative Systems, and (5) Using Uncertainty within Computation. This article contains brief reports of those five symposia.
Case-Based Reasoning Integrations
Marling, Cynthia, Sqalli, Mohammed, Rissland, Edwina, Munoz-Avila, Hector, Aha, David
This article presents an overview and survey of current work in case-based reasoning (CBR) integrations. There has been a recent upsurge in the integration of CBR with other reasoning modalities and computing paradigms, especially rule-based reasoning (RBR) and constraint-satisfaction problem (CSP) solving. CBR integrations with modelbased reasoning (MBR), genetic algorithms, and information retrieval are also discussed. This article characterizes the types of multimodal reasoning integrations where CBR can play a role, identifies the types of roles that CBR components can fulfill, and provides examples of integrated CBR systems.
Case-Based Reasoning Integrations
Marling, Cynthia, Sqalli, Mohammed, Rissland, Edwina, Munoz-Avila, Hector, Aha, David
This article presents an overview and survey of current work in case-based reasoning (CBR) integrations. There has been a recent upsurge in the integration of CBR with other reasoning modalities and computing paradigms, especially rule-based reasoning (RBR) and constraint-satisfaction problem (CSP) solving. CBR integrations with modelbased reasoning (MBR), genetic algorithms, and information retrieval are also discussed. This article characterizes the types of multimodal reasoning integrations where CBR can play a role, identifies the types of roles that CBR components can fulfill, and provides examples of integrated CBR systems. Past progress, current trends, and issues for future research are discussed.
Occam's Razor
Rasmussen, Carl Edward, Ghahramani, Zoubin
The Bayesian paradigm apparently only sometimes gives rise to Occam's Razor; at other times very large models perform well. We give simple examples of both kinds of behaviour. The two views are reconciled when measuring complexity of functions, rather than of the machinery used to implement them. We analyze the complexity of functions for some linear in the parameter models that are equivalent to Gaussian Processes, and always find Occam's Razor at work. 1 Introduction Occam's Razor is a well known principle of "parsimony of explanations" which is influential in scientific thinking in general and in problems of statistical inference in particular. In this paper we review its consequences for Bayesian statistical models, where its behaviour can be easily demonstrated and quantified.
Occam's Razor
Rasmussen, Carl Edward, Ghahramani, Zoubin
The Bayesian paradigm apparently only sometimes gives rise to Occam's Razor; at other times very large models perform well. We give simple examples of both kinds of behaviour. The two views are reconciled when measuring complexity of functions, rather than of the machinery used to implement them. We analyze the complexity of functions for some linear in the parameter models that are equivalent to Gaussian Processes, and always find Occam's Razor at work. 1 Introduction Occam's Razor is a well known principle of "parsimony of explanations" which is influential in scientific thinking in general and in problems of statistical inference in particular. In this paper we review its consequences for Bayesian statistical models, where its behaviour can be easily demonstrated and quantified.