Not enough data to create a plot.
Try a different view from the menu above.
taxnodes:Technology: Overviews
Nonparametric Greedy Algorithms for the Sparse Learning Problem
This paper studies the forward greedy strategy in sparse nonparametric regression. Foradditive models, we propose an algorithm called additive forward regression; forgeneral multivariate models, we propose an algorithm called generalized forward regression. Both algorithms simultaneously conduct estimation and variable selection in nonparametric settings for the high dimensional sparse learning problem. Our main emphasis is empirical: on both simulated and real data, these two simple greedy methods can clearly outperform several state-ofthe-art competitors,including LASSO, a nonparametric version of LASSO called the sparse additive model (SpAM) and a recently proposed adaptive parametric forward-backward algorithm called Foba. We also provide some theoretical justifications ofspecific versions of the additive forward regression.
Translated Learning: Transfer Learning across Different Feature Spaces
Dai, Wenyuan, Chen, Yuqiang, Xue, Gui-rong, Yang, Qiang, Yu, Yong
This paper investigates a new machine learning strategy called translated learning. Unlikemany previous learning tasks, we focus on how to use labeled data from one feature space to enhance the classification of other entirely different learning spaces. For example, we might wish to use labeled text data to help learn a model for classifying image data, when the labeled images are difficult to obtain. Animportant aspect of translated learning is to build a "bridge" to link one feature space (known as the "source space") to another space (known as the "target space")through a translator in order to migrate the knowledge from source to target. The translated learning solution uses a language model to link the class labels to the features in the source spaces, which in turn is translated to the features inthe target spaces. Finally, this chain of linkages is completed by tracing back to the instances in the target spaces. We show that this path of linkage can be modeled using a Markov chain and risk minimization. Through experiments on the text-aided image classification and cross-language classification tasks, we demonstrate that our translated learning framework can greatly outperform many state-of-the-art baseline methods.
Translated Learning: Transfer Learning across Different Feature Spaces
Dai, Wenyuan, Chen, Yuqiang, Xue, Gui-rong, Yang, Qiang, Yu, Yong
This paper investigates a new machine learning strategy called translated learning. Unlike many previous learning tasks, we focus on how to use labeled data from one feature space to enhance the classification of other entirely different learning spaces. For example, we might wish to use labeled text data to help learn a model for classifying image data, when the labeled images are difficult to obtain. An important aspect of translated learning is to build a "bridge" to link one feature space (known as the "source space") to another space (known as the "target space") through a translator in order to migrate the knowledge from source to target. The translated learning solution uses a language model to link the class labels to the features in the source spaces, which in turn is translated to the features in the target spaces. Finally, this chain of linkages is completed by tracing back to the instances in the target spaces. We show that this path of linkage can be modeled using a Markov chain and risk minimization. Through experiments on the text-aided image classification and cross-language classification tasks, we demonstrate that our translated learning framework can greatly outperform many state-of-the-art baseline methods.
Analysis of SVM with Indefinite Kernels
Ying, Yiming, Campbell, Colin, Girolami, Mark
The recent introduction of indefinite SVM by Luss and dAspremont [15] has effectively demonstrated SVM classification with a non-positive semi-definite kernel (indefinite kernel). This paper studies the properties of the objective function introduced there. In particular, we show that the objective function is continuously differentiable and its gradient can be explicitly computed. Indeed, we further show that its gradient is Lipschitz continuous. The main idea behind our analysis is that the objective function is smoothed by the penalty term, in its saddle (min-max) representation, measuring the distance between the indefinite kernel matrix and the proxy positive semi-definite one. Our elementary result greatly facilitates the application of gradient-based algorithms. Based on our analysis, we further develop Nesterovs smooth optimization approach [16,17] for indefinite SVM which has an optimal convergence rate for smooth problems. Experiments on various benchmark datasets validate our analysis and demonstrate the efficiency of our proposed algorithms.
On the Generalization Ability of Online Strongly Convex Programming Algorithms
Kakade, Sham M., Tewari, Ambuj
This paper examines the generalization properties of online convex programming algorithms when the loss function is Lipschitz and strongly convex. Our main result is a sharp bound, that holds with high probability, on the excess risk of the output of an online algorithm in terms of the average regret. This allows one to use recent algorithms with logarithmic cumulative regret guarantees to achieve fast convergence rates for the excess risk with high probability. As a corollary, we characterize the convergence rate of PEGASOS (with high probability), a recently proposed method for solving the SVM optimization problem.
A survey of statistical network models
Goldenberg, Anna, Zheng, Alice X, Fienberg, Stephen E, Airoldi, Edoardo M
Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a substantial literature in the 1970s. This effort moved into the statistical literature in the late 1970s and 1980s, and the past decade has seen a burgeoning network literature in statistical physics and computer science. The growth of the World Wide Web and the emergence of online networking communities such as Facebook, MySpace, and LinkedIn, and a host of more specialized professional network communities has intensified interest in the study of networks and network data. Our goal in this review is to provide the reader with an entry point to this burgeoning literature. We begin with an overview of the historical development of statistical network modeling and then we introduce a number of examples that have been studied in the network literature. Our subsequent discussion focuses on a number of prominent static and dynamic network models and their interconnections. We emphasize formal model descriptions, and pay special attention to the interpretation of parameters and their estimation. We end with a description of some open problems and challenges for machine learning and statistics.
Positive Definite Kernels in Machine Learning
This survey is an introduction to positive definite kernels and the set of methods they have inspired in the machine learning literature, namely kernel methods. We first discuss some properties of positive definite kernels as well as reproducing kernel Hibert spaces, the natural extension of the set of functions $\{k(x,\cdot),x\in\mathcal{X}\}$ associated with a kernel $k$ defined on a space $\mathcal{X}$. We discuss at length the construction of kernel functions that take advantage of well-known statistical models. We provide an overview of numerous data-analysis methods which take advantage of reproducing kernel Hilbert spaces and discuss the idea of combining several kernels to improve the performance on certain tasks. We also provide a short cookbook of different kernels which are particularly useful for certain data-types such as images, graphs or speech segments.
Computational Creativity: Coming of Age
Colton, Simon (Imperial College) | Mantaras, Ramon Lopez de (Artificial Intelligence Research Institute (IIIA), Spanish National Research Council (CSIC)) | Stock, Oliviero (IRST)
Such creative software can be used for autonomous creative tasks, such as inventing mathematical theories, writing poems, painting pictures, and composing music. However, computational creativity studies also enable us to understand human creativity and to produce programs for creative people to use, where the software acts as a creative collaborator rather than a mere tool. Historically, it's been difficult for society to come to terms with machines that purport to be intelligent and even more difficult to admit that they might be creative. For instance, in 1934, some professors at the University of Manchester in the United Kingdom built meccano models that were able to solve some mathematical equations. Groundbreaking for its time, this project was written up in a piece in Meccano Magazine. The article was titled "Are Thinking Machines Possible" and was very upbeat, but surprisingly ends by stating that "Truly creative thinking of course will always remain beyond the power of any machine." Surely, though, this attitude has changed in light of the amazing advances in hardware and software technology that followed those meccano models?
Functional learning through kernels
Canu, Stephane, Mary, Xavier, Rakotomamonjy, Alain
This paper reviews the functional aspects of statistical learning theory. The main point under consideration is the nature of the hypothesis set when no prior information is available but data. Within this framework we first discuss about the hypothesis set: it is a vectorial space, it is a set of pointwise defined functions, and the evaluation functional on this set is a continuous mapping. Based on these principles an original theory is developed generalizing the notion of reproduction kernel Hilbert space to non hilbertian sets. Then it is shown that the hypothesis set of any learning machine has to be a generalized reproducing set. Therefore, thanks to a general "representer theorem", the solution of the learning problem is still a linear combination of a kernel. Furthermore, a way to design these kernels is given. To illustrate this framework some examples of such reproducing sets and kernels are given.