Plotting

 taxnodes:Technology: Overviews


Unlocking the Potential of Past Research: Using Generative AI to Reconstruct Healthcare Simulation Models

arXiv.org Artificial Intelligence

Discrete-event simulation (DES) is widely used in healthcare Operations Research, but the models themselves are rarely shared. This limits their potential for reuse and long-term impact in the modelling and healthcare communities. This study explores the feasibility of using generative artificial intelligence (AI) to recreate published models using Free and Open Source Software (FOSS), based on the descriptions provided in an academic journal. Using a structured methodology, we successfully generated, tested and internally reproduced two DES models, including user interfaces. The reported results were replicated for one model, but not the other, likely due to missing information on distributions. These models are substantially more complex than AI-generated DES models published to date. Given the challenges we faced in prompt engineering, code generation, and model testing, we conclude that our iterative approach to model development, systematic comparison and testing, and the expertise of our team were necessary to the success of our recreated simulation models.


Datasets for Depression Modeling in Social Media: An Overview

arXiv.org Artificial Intelligence

Depression is the most common mental health disorder, and its prevalence increased during the COVID-19 pandemic. As one of the most extensively researched psychological conditions, recent research has increasingly focused on leveraging social media data to enhance traditional methods of depression screening. This paper addresses the growing interest in interdisciplinary research on depression, and aims to support early-career researchers by providing a comprehensive and up-to-date list of datasets for analyzing and predicting depression through social media data. We present an overview of datasets published between 2019 and 2024. We also make the comprehensive list of datasets available online as a continuously updated resource, with the hope that it will facilitate further interdisciplinary research into the linguistic expressions of depression on social media.


Searching for Efficient Multi-Scale Architectures for Dense Image Prediction

Neural Information Processing Systems

The design of neural network architectures is an important component for achieving state-of-the-art performance with machine learning systems across a broad array of tasks. Much work has endeavored to design and build architectures automatically through clever construction of a search space paired with simple learning algorithms. Recent progress has demonstrated that such meta-learning methods may exceed scalable human-invented architectures on image classification tasks. An open question is the degree to which such methods may generalize to new domains. In this work we explore the construction of meta-learning techniques for dense image prediction focused on the tasks of scene parsing, person-part segmentation, and semantic image segmentation. Constructing viable search spaces in this domain is challenging because of the multi-scale representation of visual information and the necessity to operate on high resolution imagery. Based on a survey of techniques in dense image prediction, we construct a recursive search space and demonstrate that even with efficient random search, we can identify architectures that outperform human-invented architectures and achieve state-of-the-art performance on three dense prediction tasks including 82.7% on Cityscapes (street scene parsing), 71.3% on PASCAL-Person-Part (person-part segmentation), and 87.9% on PASCAL VOC 2012 (semantic image segmentation). Additionally, the resulting architecture is more computationally efficient, requiring half the parameters and half the computational cost as previous state of the art systems.



Deep Signature Transforms

Neural Information Processing Systems

The signature is an infinite graded sequence of statistics known to characterise a stream of data up to a negligible equivalence class. It is a transform which has previously been treated as a fixed feature transformation, on top of which a model may be built. We propose a novel approach which combines the advantages of the signature transform with modern deep learning frameworks. By learning an augmentation of the stream prior to the signature transform, the terms of the signature may be selected in a data-dependent way. More generally, we describe how the signature transform may be used as a layer anywhere within a neural network. In this context it may be interpreted as a pooling operation. We present the results of empirical experiments to back up the theoretical justification.



Social-BiGAT: Multimodal Trajectory Forecasting using Bicycle-GAN and Graph Attention Networks

Neural Information Processing Systems

Predicting the future trajectories of multiple interacting agents in a scene has become an increasingly important problem for many different applications ranging from control of autonomous vehicles and social robots to security and surveillance. This problem is compounded by the presence of social interactions between humans and their physical interactions with the scene. While the existing literature has explored some of these cues, they mainly ignored the multimodal nature of each human's future trajectory. In this paper, we present Social-BiGAT, a graph-based generative adversarial network that generates realistic, multimodal trajectory predictions by better modelling the social interactions of pedestrians in a scene. Our method is based on a graph attention network (GAT) that learns reliable feature representations that encode the social interactions between humans in the scene, and a recurrent encoder-decoder architecture that is trained adversarially to predict, based on the features, the humans' paths. We explicitly account for the multimodal nature of the prediction problem by forming a reversible transformation between each scene and its latent noise vector, as in Bicycle-GAN. We show that our framework achieves state-of-the-art performance comparing it to several baselines on existing trajectory forecasting benchmarks.


Unveiling Causal Reasoning in Large Language Models: Reality or Mirage?

Neural Information Processing Systems

Causal reasoning capability is critical in advancing large language models (LLMs) toward strong artificial intelligence. While versatile LLMs appear to have demonstrated capabilities in understanding contextual causality and providing responses that obey the laws of causality, it remains unclear whether they perform genuine causal reasoning akin to humans. However, current evidence indicates the contrary. Specifically, LLMs are only capable of performing shallow (level-1) causal reasoning, primarily attributed to the causal knowledge embedded in their parameters, but they lack the capacity for genuine human-like (level-2) causal reasoning. To support this hypothesis, methodologically, we delve into the autoregression mechanism of transformer-based LLMs, revealing that it is not inherently causal. Empirically, we introduce a new causal Q&A benchmark called CausalProbe-2024, whose corpora are fresh and nearly unseen for the studied LLMs. The LLMs exhibit a significant performance drop on CausalProbe-2024 compared to earlier benchmarks, indicating the fact that they primarily engage in level-1 causal reasoning. To bridge the gap towards level-2 causal reasoning, we draw inspiration from the fact that human reasoning is usually facilitated by general knowledge and intended goals.