Goto

Collaborating Authors

 Internet of Things: Overviews


A Comprehensive Survey on Radio Frequency (RF) Fingerprinting: Traditional Approaches, Deep Learning, and Open Challenges

arXiv.org Artificial Intelligence

Fifth generation (5G) networks and beyond envisions massive Internet of Things (IoT) rollout to support disruptive applications such as extended reality (XR), augmented/virtual reality (AR/VR), industrial automation, autonomous driving, and smart everything which brings together massive and diverse IoT devices occupying the radio frequency (RF) spectrum. Along with spectrum crunch and throughput challenges, such a massive scale of wireless devices exposes unprecedented threat surfaces. RF fingerprinting is heralded as a candidate technology that can be combined with cryptographic and zero-trust security measures to ensure data privacy, confidentiality, and integrity in wireless networks. Motivated by the relevance of this subject in the future communication networks, in this work, we present a comprehensive survey of RF fingerprinting approaches ranging from a traditional view to the most recent deep learning (DL) based algorithms. Existing surveys have mostly focused on a constrained presentation of the wireless fingerprinting approaches, however, many aspects remain untold. In this work, however, we mitigate this by addressing every aspect - background on signal intelligence (SIGINT), applications, relevant DL algorithms, systematic literature review of RF fingerprinting techniques spanning the past two decades, discussion on datasets, and potential research avenues - necessary to elucidate this topic to the reader in an encyclopedic manner.


A Comprehensive Survey on the Convergence of Vehicular Social Networks and Fog Computing

arXiv.org Artificial Intelligence

In recent years, the number of IoT devices has been growing fast which leads to a challenging task for managing, storing, analyzing, and making decisions about raw data from different IoT devices, especially for delay-sensitive applications. In a vehicular network (VANET) environment, the dynamic nature of vehicles makes the current open research issues even more challenging due to the frequent topology changes that can lead to disconnections between vehicles. To this end, a number of research works have been proposed in the context of cloud and fog computing over the 5G infrastructure. On the other hand, there are a variety of research proposals that aim to extend the connection time between vehicles. Vehicular Social Networks (VSNs) have been defined to decrease the burden of connection time between the vehicles. This survey paper first provides the necessary background information and definitions about fog, cloud and related paradigms such as 5G and SDN. Then, it introduces the reader to Vehicular Social Networks, the different metrics and the main differences between VSNs and Online Social Networks. Finally, this survey investigates the related works in the context of VANETs that have demonstrated different architectures to address the different issues in fog computing. Moreover, it provides a categorization of the different approaches and discusses the required metrics in the context of fog and cloud and compares them to Vehicular social networks. A comparison of the relevant related works is discussed along with new research challenges and trends in the domain of VSNs and fog computing.


False Data Injection Threats in Active Distribution Systems: A Comprehensive Survey

arXiv.org Artificial Intelligence

With the proliferation of smart devices and revolutions in communications, electrical distribution systems are gradually shifting from passive, manually-operated and inflexible ones, to a massively interconnected cyber-physical smart grid to address the energy challenges of the future. However, the integration of several cutting-edge technologies has introduced several security and privacy vulnerabilities due to the large-scale complexity and resource limitations of deployments. Recent research trends have shown that False Data Injection (FDI) attacks are becoming one of the most malicious cyber threats within the entire smart grid paradigm. Therefore, this paper presents a comprehensive survey of the recent advances in FDI attacks within active distribution systems and proposes a taxonomy to classify the FDI threats with respect to smart grid targets. The related studies are contrasted and summarized in terms of the attack methodologies and implications on the electrical power distribution networks. Finally, we identify some research gaps and recommend a number of future research directions to guide and motivate prospective researchers.


The Internet of Federated Things (IoFT): A Vision for the Future and In-depth Survey of Data-driven Approaches for Federated Learning

arXiv.org Artificial Intelligence

The Internet of Things (IoT) is on the verge of a major paradigm shift. In the IoT system of the future, IoFT, the cloud will be substituted by the crowd where model training is brought to the edge, allowing IoT devices to collaboratively extract knowledge and build smart analytics/models while keeping their personal data stored locally. This paradigm shift was set into motion by the tremendous increase in computational power on IoT devices and the recent advances in decentralized and privacy-preserving model training, coined as federated learning (FL). This article provides a vision for IoFT and a systematic overview of current efforts towards realizing this vision. Specifically, we first introduce the defining characteristics of IoFT and discuss FL data-driven approaches, opportunities, and challenges that allow decentralized inference within three dimensions: (i) a global model that maximizes utility across all IoT devices, (ii) a personalized model that borrows strengths across all devices yet retains its own model, (iii) a meta-learning model that quickly adapts to new devices or learning tasks. We end by describing the vision and challenges of IoFT in reshaping different industries through the lens of domain experts. Those industries include manufacturing, transportation, energy, healthcare, quality & reliability, business, and computing.


Modelling and Optimisation of Resource Usage in an IoT Enabled Smart Campus

arXiv.org Artificial Intelligence

University campuses are essentially a microcosm of a city. They comprise diverse facilities such as residences, sport centres, lecture theatres, parking spaces, and public transport stops. Universities are under constant pressure to improve efficiencies while offering a better experience to various stakeholders including students, staff, and visitors. Nonetheless, anecdotal evidence indicates that campus assets are not being utilised efficiently, often due to the lack of data collection and analysis, thereby limiting the ability to make informed decisions on the allocation and management of resources. Advances in the Internet of Things (IoT) technologies that can sense and communicate data from the physical world, coupled with data analytics and Artificial intelligence (AI) that can predict usage patterns, have opened up new opportunities for organisations to lower cost and improve user experience. This thesis explores this opportunity via theory and experimentation using UNSW Sydney as a living laboratory.


A Survey of Human Activity Recognition in Smart Homes Based on IoT Sensors Algorithms: Taxonomies, Challenges, and Opportunities with Deep Learning

arXiv.org Artificial Intelligence

Recent advances in Internet of Things (IoT) technologies and the reduction in the cost of sensors have encouraged the development of smart environments, such as smart homes. Smart homes can offer home assistance services to improve the quality of life, autonomy and health of their residents, especially for the elderly and dependent. To provide such services, a smart home must be able to understand the daily activities of its residents. Techniques for recognizing human activity in smart homes are advancing daily. But new challenges are emerging every day. In this paper, we present recent algorithms, works, challenges and taxonomy of the field of human activity recognition in a smart home through ambient sensors. Moreover, since activity recognition in smart homes is a young field, we raise specific problems, missing and needed contributions. But also propose directions, research opportunities and solutions to accelerate advances in this field.


Keeping waterways clean with cutting-edge technologies

#artificialintelligence

A challenge of building any new digital solution is the chance that it might be something customers don't want or need. For that reason, involving clients in a co-creation process leads to better outcomes. Yorkshire Water was engaged in this project from the start. To ensure they had the necessary commitment to progress at pace, a co-creation order contributed toward development costs and the team committed to bi-weekly reviews and deploying the application in parallel to their current system. After a "go" decision in January 2020, the first minimal viable product (MVP) was introduced in March.


A Review on Edge Analytics: Issues, Challenges, Opportunities, Promises, Future Directions, and Applications

arXiv.org Artificial Intelligence

Edge technology aims to bring Cloud resources (specifically, the compute, storage, and network) to the closed proximity of the Edge devices, i.e., smart devices where the data are produced and consumed. Embedding computing and application in Edge devices lead to emerging of two new concepts in Edge technology, namely, Edge computing and Edge analytics. Edge analytics uses some techniques or algorithms to analyze the data generated by the Edge devices. With the emerging of Edge analytics, the Edge devices have become a complete set. Currently, Edge analytics is unable to provide full support for the execution of the analytic techniques. The Edge devices cannot execute advanced and sophisticated analytic algorithms following various constraints such as limited power supply, small memory size, limited resources, etc. This article aims to provide a detailed discussion on Edge analytics. A clear explanation to distinguish between the three concepts of Edge technology, namely, Edge devices, Edge computing, and Edge analytics, along with their issues. Furthermore, the article discusses the implementation of Edge analytics to solve many problems in various areas such as retail, agriculture, industry, and healthcare. In addition, the research papers of the state-of-the-art edge analytics are rigorously reviewed in this article to explore the existing issues, emerging challenges, research opportunities and their directions, and applications.


A Survey on Federated Learning and its Applications for Accelerating Industrial Internet of Things

arXiv.org Artificial Intelligence

Federated learning (FL) brings collaborative intelligence into industries without centralized training data to accelerate the process of Industry 4.0 on the edge computing level. FL solves the dilemma in which enterprises wish to make the use of data intelligence with security concerns. To accelerate industrial Internet of things with the further leverage of FL, existing achievements on FL are developed from three aspects: 1) define terminologies and elaborate a general framework of FL for accommodating various scenarios; 2) discuss the state-of-the-art of FL on fundamental researches including data partitioning, privacy preservation, model optimization, local model transportation, personalization, motivation mechanism, platform & tools, and benchmark; 3) discuss the impacts of FL from the economic perspective. To attract more attention from industrial academia and practice, a FL-transformed manufacturing paradigm is presented, and future research directions of FL are given and possible immediate applications in Industry 4.0 domain are also proposed.


Systemic formalisation of Cyber-Physical-Social System (CPSS): A systematic literature review

arXiv.org Artificial Intelligence

The notion of Cyber-Physical-Social System (CPSS) is an emerging concept developed as a result of the need to understand the impact of Cyber-Physical Systems (CPS) on humans and vice versa. This paradigm shift from CPS to CPSS was mainly attributed to the increasing use of sensor-enabled smart devices and the tight link with the users. The concept of CPSS has been around for over a decade and it has gained increasing attention over the past few years. The evolution to incorporate human aspects in the CPS research has unlocked a number of research challenges. Particularly human dynamics brings additional complexity that is yet to be explored. The exploration to conceptualise the notion of CPSS has been partially addressed in few scientific literatures. Although its conceptualisation has always been use-case dependent. Thus, there is a lack of generic view as most works focus on specific domains. Furthermore, the systemic core and design principles linking it with the theory of systems are loose. This work aims at addressing these issues by first exploring and analysing scientific literature to understand the complete spectrum of CPSS through a Systematic Literature Review (SLR). Thereby identifying the state-of-the-art perspectives on CPSS regarding definitions, underlining principles and application areas. Subsequently, based on the findings of the SLR, we propose a domain-independent definition and a meta-model for CPSS, grounded in the Theory of Systems. Finally, a discussion on feasible future research directions is presented based on the systemic notion and the proposed meta-models.