Internet of Things: Overviews
The Energy Prediction Smart-Meter Dataset: Analysis of Previous Competitions and Beyond
Pekaslan, Direnc, Alonso-Moral, Jose Maria, Bandara, Kasun, Bergmeir, Christoph, Bernabe-Moreno, Juan, Eigenmann, Robert, Einecke, Nils, Ergen, Selvi, Godahewa, Rakshitha, Hewamalage, Hansika, Lago, Jesus, Limmer, Steffen, Rebhan, Sven, Rabinovich, Boris, Rajapasksha, Dilini, Song, Heda, Wagner, Christian, Wu, Wenlong, Magdalena, Luis, Triguero, Isaac
This paper presents the real-world smart-meter dataset and offers an analysis of solutions derived from the Energy Prediction Technical Challenges, focusing primarily on two key competitions: the IEEE Computational Intelligence Society (IEEE-CIS) Technical Challenge on Energy Prediction from Smart Meter data in 2020 (named EP) and its follow-up challenge at the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) in 2021 (named as XEP). These competitions focus on accurate energy consumption forecasting and the importance of interpretability in understanding the underlying factors. The challenge aims to predict monthly and yearly estimated consumption for households, addressing the accurate billing problem with limited historical smart meter data. The dataset comprises 3,248 smart meters, with varying data availability ranging from a minimum of one month to a year. This paper delves into the challenges, solutions and analysing issues related to the provided real-world smart meter data, developing accurate predictions at the household level, and introducing evaluation criteria for assessing interpretability. Additionally, this paper discusses aspects beyond the competitions: opportunities for energy disaggregation and pattern detection applications at the household level, significance of communicating energy-driven factors for optimised billing, and emphasising the importance of responsible AI and data privacy considerations. These aspects provide insights into the broader implications and potential advancements in energy consumption prediction. Overall, these competitions provide a dataset for residential energy research and serve as a catalyst for exploring accurate forecasting, enhancing interpretability, and driving progress towards the discussion of various aspects such as energy disaggregation, demand response programs or behavioural interventions.
Towards Ubiquitous Semantic Metaverse: Challenges, Approaches, and Opportunities
Li, Kai, Lau, Billy Pik Lik, Yuan, Xin, Ni, Wei, Guizani, Mohsen, Yuen, Chau
In recent years, ubiquitous semantic Metaverse has been studied to revolutionize immersive cyber-virtual experiences for augmented reality (AR) and virtual reality (VR) users, which leverages advanced semantic understanding and representation to enable seamless, context-aware interactions within mixed-reality environments. This survey focuses on the intelligence and spatio-temporal characteristics of four fundamental system components in ubiquitous semantic Metaverse, i.e., artificial intelligence (AI), spatio-temporal data representation (STDR), semantic Internet of Things (SIoT), and semantic-enhanced digital twin (SDT). We thoroughly survey the representative techniques of the four fundamental system components that enable intelligent, personalized, and context-aware interactions with typical use cases of the ubiquitous semantic Metaverse, such as remote education, work and collaboration, entertainment and socialization, healthcare, and e-commerce marketing. Furthermore, we outline the opportunities for constructing the future ubiquitous semantic Metaverse, including scalability and interoperability, privacy and security, performance measurement and standardization, as well as ethical considerations and responsible AI. Addressing those challenges is important for creating a robust, secure, and ethically sound system environment that offers engaging immersive experiences for the users and AR/VR applications.
Learning from Hypervectors: A Survey on Hypervector Encoding
Aygun, Sercan, Moghadam, Mehran Shoushtari, Najafi, M. Hassan, Imani, Mohsen
Hyperdimensional computing (HDC) is an emerging computing paradigm that imitates the brain's structure to offer a powerful and efficient processing and learning model. In HDC, the data are encoded with long vectors, called hypervectors, typically with a length of 1K to 10K. The literature provides several encoding techniques to generate orthogonal or correlated hypervectors, depending on the intended application. The existing surveys in the literature often focus on the overall aspects of HDC systems, including system inputs, primary computations, and final outputs. However, this study takes a more specific approach. It zeroes in on the HDC system input and the generation of hypervectors, directly influencing the hypervector encoding process. This survey brings together various methods for hypervector generation from different studies and explores the limitations, challenges, and potential benefits they entail. Through a comprehensive exploration of this survey, readers will acquire a profound understanding of various encoding types in HDC and gain insights into the intricate process of hypervector generation for diverse applications.
A Comprehensive Review of Automated Data Annotation Techniques in Human Activity Recognition
Demrozi, Florenc, Turetta, Cristian, Machot, Fadi Al, Pravadelli, Graziano, Kindt, Philipp H.
Human Activity Recognition (HAR) has become one of the leading research topics of the last decade. As sensing technologies have matured and their economic costs have declined, a host of novel applications, e.g., in healthcare, industry, sports, and daily life activities have become popular. The design of HAR systems requires different time-consuming processing steps, such as data collection, annotation, and model training and optimization. In particular, data annotation represents the most labor-intensive and cumbersome step in HAR, since it requires extensive and detailed manual work from human annotators. Therefore, different methodologies concerning the automation of the annotation procedure in HAR have been proposed. The annotation problem occurs in different notions and scenarios, which all require individual solutions. In this paper, we provide the first systematic review on data annotation techniques for HAR. By grouping existing approaches into classes and providing a taxonomy, our goal is to support the decision on which techniques can be beneficially used in a given scenario.
Sustainable Palm Tree Farming: Leveraging IoT and Multi-Modal Data for Early Detection and Mapping of Red Palm Weevil
Hajjaji, Yosra, Alzahem, Ayyub, Boulila, Wadii, Farah, Imed Riadh, Koubaa, Anis
The Red Palm Weevil (RPW) is a highly destructive insect causing economic losses and impacting palm tree farming worldwide. This paper proposes an innovative approach for sustainable palm tree farming by utilizing advanced technologies for the early detection and management of RPW. Our approach combines computer vision, deep learning (DL), the Internet of Things (IoT), and geospatial data to detect and classify RPW-infested palm trees effectively. The main phases include; (1) DL classification using sound data from IoT devices, (2) palm tree detection using YOLOv8 on UAV images, and (3) RPW mapping using geospatial data. Our custom DL model achieves 100% precision and recall in detecting and localizing infested palm trees. Integrating geospatial data enables the creation of a comprehensive RPW distribution map for efficient monitoring and targeted management strategies. This technology-driven approach benefits agricultural authorities, farmers, and researchers in managing RPW infestations and safeguarding palm tree plantations' productivity.
Web of Things and Trends in Agriculture: A Systematic Literature Review
Farooq, Muhammad Shoaib, Riaz, Shamyla, Alvi, Atif
In the past few years, the Web of Things (WOT) became a beneficial game-changing technology within the Agriculture domain as it introduces innovative and promising solutions to the Internet of Things (IoT) agricultural applications problems by providing its services. WOT provides the support for integration, interoperability for heterogeneous devices, infrastructures, platforms, and the emergence of various other technologies. The main aim of this study is about understanding and providing a growing and existing research content, issues, and directions for the future regarding WOT-based agriculture. Therefore, a systematic literature review (SLR) of research articles is presented by categorizing the selected studies published between 2010 and 2020 into the following categories: research type, approaches, and their application domains. Apart from reviewing the state-of-the-art articles on WOT solutions for the agriculture field, a taxonomy of WOT-base agriculture application domains has also been presented in this study. A model has also presented to show the picture of WOT based Smart Agriculture. Lastly, the findings of this SLR and the research gaps in terms of open issues have been presented to provide suggestions on possible future directions for the researchers for future research.
Task-Oriented Integrated Sensing, Computation and Communication for Wireless Edge AI
Xing, Hong, Zhu, Guangxu, Liu, Dongzhu, Wen, Haifeng, Huang, Kaibin, Wu, Kaishun
With the advent of emerging IoT applications such as autonomous driving, digital-twin and metaverse etc. featuring massive data sensing, analyzing and inference as well critical latency in beyond 5G (B5G) networks, edge artificial intelligence (AI) has been proposed to provide high-performance computation of a conventional cloud down to the network edge. However, most existing design frameworks separate these designs incurring unnecessary signaling overhead and waste of energy, and it is therefore of paramount importance to advance fully integrated sensing, computation and communication (ISCC) to achieve ultra-reliable and low-latency edge intelligence acquisition. In this article, we provide an overview of principles of enabling ISCC technologies followed by two concrete use cases of edge AI tasks demonstrating the advantage of task-oriented ISCC, and pointed out some practical challenges in edge AI design with advanced ISCC solutions. H. Xing and H. Wen are with the Internet of Things (IoT) Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511453, China. H. Xing is also affiliated with the Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong (e-mails: hongxing@ust.hk, D. Liu is with the School of Computing Science, University of Glasgow, Glasgow G12 8RZ, United Kingdom (e-mail: dongzhu.liu@glasgow.ac.uk). K. Huang is with the Department of Electrical and Electronic Engineering (EEE), The University of Hong Kong, Hong Kong (e-mail: huangkb@eee.hku.hk).
Intelligent Energy Management with IoT Framework in Smart Cities Using Intelligent Analysis: An Application of Machine Learning Methods for Complex Networks and Systems
Nikpour, Maryam, Yousefi, Parisa Behvand, Jafarzadeh, Hadi, Danesh, Kasra, Ahmadi, Mohsen
Smart buildings are increasingly using Internet of Things (IoT)-based wireless sensing systems to reduce their energy consumption and environmental impact. As a result of their compact size and ability to sense, measure, and compute all electrical properties, Internet of Things devices have become increasingly important in our society. A major contribution of this study is the development of a comprehensive IoT-based framework for smart city energy management, incorporating multiple components of IoT architecture and framework. An IoT framework for intelligent energy management applications that employ intelligent analysis is an essential system component that collects and stores information. Additionally, it serves as a platform for the development of applications by other companies. Furthermore, we have studied intelligent energy management solutions based on intelligent mechanisms. The depletion of energy resources and the increase in energy demand have led to an increase in energy consumption and building maintenance. The data collected is used to monitor, control, and enhance the efficiency of the system.
Internet of Things Meets Robotics: A Survey of Cloud-based Robots
This work presents a survey of existing literature on the fusion of the Internet of Things (IoT) with robotics and explores the integration of these technologies for the development of the Internet of Robotics Things (IoRT). The survey focuses on the applications of IoRT in healthcare and agriculture, while also addressing key concerns regarding the adoption of IoT and robotics. Additionally, an online survey was conducted to examine how companies utilize IoT technology in their organizations. The findings highlight the benefits of IoT in improving customer experience, reducing costs, and accelerating product development. However, concerns regarding unauthorized access, data breaches, and privacy need to be addressed for successful IoT deployment.
VEDLIoT -- Next generation accelerated AIoT systems and applications
Mika, Kevin, Griessl, René, Kucza, Nils, Porrmann, Florian, Kaiser, Martin, Tigges, Lennart, Hagemeyer, Jens, Trancoso, Pedro, Azhar, Muhammad Waqar, Qararyah, Fareed, Zouzoula, Stavroula, Ménétrey, Jämes, Pasin, Marcelo, Felber, Pascal, Marcus, Carina, Brunnegard, Oliver, Eriksson, Olof, Salomonsson, Hans, Ödman, Daniel, Ask, Andreas, Casimiro, Antonio, Bessani, Alysson, Carvalho, Tiago, Gugala, Karol, Zierhoffer, Piotr, Latosinski, Grzegorz, Tassemeier, Marco, Porrmann, Mario, Heyn, Hans-Martin, Knauss, Eric, Mao, Yufei, Meierhöfer, Franz
The VEDLIoT project aims to develop energy-efficient Deep Learning methodologies for distributed Artificial Intelligence of Things (AIoT) applications. During our project, we propose a holistic approach that focuses on optimizing algorithms while addressing safety and security challenges inherent to AIoT systems. The foundation of this approach lies in a modular and scalable cognitive IoT hardware platform, which leverages microserver technology to enable users to configure the hardware to meet the requirements of a diverse array of applications. Heterogeneous computing is used to boost performance and energy efficiency. In addition, the full spectrum of hardware accelerators is integrated, providing specialized ASICs as well as FPGAs for reconfigurable computing. The project's contributions span across trusted computing, remote attestation, and secure execution environments, with the ultimate goal of facilitating the design and deployment of robust and efficient AIoT systems. The overall architecture is validated on use-cases ranging from Smart Home to Automotive and Industrial IoT appliances. Ten additional use cases are integrated via an open call, broadening the range of application areas.