Goto

Collaborating Authors

 Internet of Things: Overviews


AI security and cyber risk in IoT systems

arXiv.org Artificial Intelligence

However, this extensive integration of IoT devices has also introduced significant cybersecurity risks. The Internet of Things (IoT) has attracted the attention of cybersecurity professionals after cyber-attackers started using IoT devices as botnets (Palekar and Radhika 2022). IoT devices are often vulnerable to various cyber threats, including distributed denial-of-service (DDoS) attacks, botnet exploitation, and data breaches, all of which can compromise critical systems' integrity, confidentiality, and availability. Understanding and mitigating the risks associated with IoT deployments is crucial in this evolving landscape, especially given the interdependencies between IoT components and systems.


A Comprehensive Survey on Joint Resource Allocation Strategies in Federated Edge Learning

arXiv.org Artificial Intelligence

Federated Edge Learning (FEL), an emerging distributed Machine Learning (ML) paradigm, enables model training in a distributed environment while ensuring user privacy by using physical separation for each user data. However, with the development of complex application scenarios such as the Internet of Things (IoT) and Smart Earth, the conventional resource allocation schemes can no longer effectively support these growing computational and communication demands. Therefore, joint resource optimization may be the key solution to the scaling problem. This paper simultaneously addresses the multifaceted challenges of computation and communication, with the growing multiple resource demands. We systematically review the joint allocation strategies for different resources (computation, data, communication, and network topology) in FEL, and summarize the advantages in improving system efficiency, reducing latency, enhancing resource utilization and enhancing robustness. In addition, we present the potential ability of joint optimization to enhance privacy preservation by reducing communication requirements, indirectly. This work not only provides theoretical support for resource management in federated learning (FL) systems, but also provides ideas for potential optimal deployment in multiple real-world scenarios. By thoroughly discussing the current challenges and future research directions, it also provides some important insights into multi-resource optimization in complex application environments.


Machine Learning-Assisted Intrusion Detection for Enhancing Internet of Things Security

arXiv.org Artificial Intelligence

Attacks against the Internet of Things (IoT) are rising as devices, applications, and interactions become more networked and integrated. The increase in cyber-attacks that target IoT networks poses a considerable vulnerability and threat to the privacy, security, functionality, and availability of critical systems, which leads to operational disruptions, financial losses, identity thefts, and data breaches. To efficiently secure IoT devices, real-time detection of intrusion systems is critical, especially those using machine learning to identify threats and mitigate risks and vulnerabilities. This paper investigates the latest research on machine learning-based intrusion detection strategies for IoT security, concentrating on real-time responsiveness, detection accuracy, and algorithm efficiency. Key studies were reviewed from all well-known academic databases, and a taxonomy was provided for the existing approaches. This review also highlights existing research gaps and outlines the limitations of current IoT security frameworks to offer practical insights for future research directions and developments.


Artificial Intelligence for Secured Information Systems in Smart Cities: Collaborative IoT Computing with Deep Reinforcement Learning and Blockchain

arXiv.org Artificial Intelligence

The accelerated expansion of the Internet of Things (IoT) has raised critical challenges associated with privacy, security, and data integrity, specifically in infrastructures such as smart cities or smart manufacturing. Blockchain technology provides immutable, scalable, and decentralized solutions to address these challenges, and integrating deep reinforcement learning (DRL) into the IoT environment offers enhanced adaptability and decision-making. This paper investigates the integration of blockchain and DRL to optimize mobile transmission and secure data exchange in IoT-assisted smart cities. Through the clustering and categorization of IoT application systems, the combination of DRL and blockchain is shown to enhance the performance of IoT networks by maintaining privacy and security. Based on the review of papers published between 2015 and 2024, we have classified the presented approaches and offered practical taxonomies, which provide researchers with critical perspectives and highlight potential areas for future exploration and research. Our investigation shows how combining blockchain's decentralized framework with DRL can address privacy and security issues, improve mobile transmission efficiency, and guarantee robust, privacy-preserving IoT systems. Additionally, we explore blockchain integration for DRL and outline the notable applications of DRL technology. By addressing the challenges of machine learning and blockchain integration, this study proposes novel perspectives for researchers and serves as a foundational exploration from an interdisciplinary standpoint.


Generative AI for RF Sensing in IoT systems

arXiv.org Artificial Intelligence

The development of wireless sensing technologies, using signals such as Wi-Fi, infrared, and RF to gather environmental data, has significantly advanced within Internet of Things (IoT) systems. Among these, Radio Frequency (RF) sensing stands out for its cost-effective and non-intrusive monitoring of human activities and environmental changes. However, traditional RF sensing methods face significant challenges, including noise, interference, incomplete data, and high deployment costs, which limit their effectiveness and scalability. This paper investigates the potential of Generative AI (GenAI) to overcome these limitations within the IoT ecosystem. We provide a comprehensive review of state-of-the-art GenAI techniques, focusing on their application to RF sensing problems. By generating high-quality synthetic data, enhancing signal quality, and integrating multi-modal data, GenAI offers robust solutions for RF environment reconstruction, localization, and imaging. Additionally, GenAI's ability to generalize enables IoT devices to adapt to new environments and unseen tasks, improving their efficiency and performance. The main contributions of this article include a detailed analysis of the challenges in RF sensing, the presentation of innovative GenAI-based solutions, and the proposal of a unified framework for diverse RF sensing tasks. Through case studies, we demonstrate the effectiveness of integrating GenAI models, leading to advanced, scalable, and intelligent IoT systems.


Data-driven Modeling in Metrology -- A Short Introduction, Current Developments and Future Perspectives

arXiv.org Artificial Intelligence

Abstract: Mathematical models are vital to the field of metrology, playing a key role in the derivation of measurement results and the calculation of uncertainties from measurement data, informed by an understanding of the measurement process. These models generally represent the correlation between the quantity being measured and all other pertinent quantities. Such relationships are used to construct measurement systems that can interpret measurement data to generate conclusions and predictions about the measurement system itself. Classic models are typically analytical, built on fundamental physical principles. However, the rise of digital technology, expansive sensor networks, and high-performance computing hardware have led to a growing shift towards data-driven methodologies. This trend is especially prominent when dealing with large, intricate networked sensor systems in situations where there is limited expert understanding of the frequently changing real-world contexts. Here, we demonstrate the variety of opportunities that data-driven modeling presents, and how they have been already implemented in various real-world applications.


A Survey on Intelligent Internet of Things: Applications, Security, Privacy, and Future Directions

arXiv.org Artificial Intelligence

The rapid advances in the Internet of Things (IoT) have promoted a revolution in communication technology and offered various customer services. Artificial intelligence (AI) techniques have been exploited to facilitate IoT operations and maximize their potential in modern application scenarios. In particular, the convergence of IoT and AI has led to a new networking paradigm called Intelligent IoT (IIoT), which has the potential to significantly transform businesses and industrial domains. This paper presents a comprehensive survey of IIoT by investigating its significant applications in mobile networks, as well as its associated security and privacy issues. Specifically, we explore and discuss the roles of IIoT in a wide range of key application domains, from smart healthcare and smart cities to smart transportation and smart industries. Through such extensive discussions, we investigate important security issues in IIoT networks, where network attacks, confidentiality, integrity, and intrusion are analyzed, along with a discussion of potential countermeasures. Privacy issues in IIoT networks were also surveyed and discussed, including data, location, and model privacy leakage. Finally, we outline several key challenges and highlight potential research directions in this important area.


Securing the Future: Proactive Threat Hunting for Sustainable IoT Ecosystems

arXiv.org Artificial Intelligence

In the rapidly evolving landscape of the IoT, the security of connected devices has become a paramount concern. This paper explores the concept of proactive threat hunting as a pivotal strategy for enhancing the security and sustainability of IoT systems. Proactive threat hunting is an alternative to traditional reactive security measures that analyses IoT networks continuously and in advance to find and eliminate threats before they occure. By improving the security posture of IoT devices this approach significantly contributes to extending IoT operational lifespan and reduces environmental impact. By integrating security metrics similar to the Common Vulnerability Scoring System (CVSS) into consumer platforms, this paper argues that proactive threat hunting can elevate user awareness about the security of IoT devices. This has the potential to impact consumer choices and encourage a security-conscious mindset in both the manufacturing and user communities. Through a comprehensive analysis, this study demonstrates how proactive threat hunting can contribute to the development of a more secure, sustainable, and user-aware IoT ecosystem.


Survey of Graph Neural Network for Internet of Things and NextG Networks

arXiv.org Artificial Intelligence

The exponential increase in Internet of Things (IoT) devices coupled with 6G pushing towards higher data rates and connected devices has sparked a surge in data. Consequently, harnessing the full potential of data-driven machine learning has become one of the important thrusts. In addition to the advancement in wireless technology, it is important to efficiently use the resources available and meet the users' requirements. Graph Neural Networks (GNNs) have emerged as a promising paradigm for effectively modeling and extracting insights which inherently exhibit complex network structures due to its high performance and accuracy, scalability, adaptability, and resource efficiency. There is a lack of a comprehensive survey that focuses on the applications and advances GNN has made in the context of IoT and Next Generation (NextG) networks. To bridge that gap, this survey starts by providing a detailed description of GNN's terminologies, architecture, and the different types of GNNs. Then we provide a comprehensive survey of the advancements in applying GNNs for IoT from the perspective of data fusion and intrusion detection. Thereafter, we survey the impact GNN has made in improving spectrum awareness. Next, we provide a detailed account of how GNN has been leveraged for networking and tactical systems. Through this survey, we aim to provide a comprehensive resource for researchers to learn more about GNN in the context of wireless networks, and understand its state-of-the-art use cases while contrasting to other machine learning approaches. Finally, we also discussed the challenges and wide range of future research directions to further motivate the use of GNN for IoT and NextG Networks.


Towards Sustainable IoT: Challenges, Solutions, and Future Directions for Device Longevity

arXiv.org Artificial Intelligence

In an era dominated by the Internet of Things, ensuring the longevity and sustainability of IoT devices has emerged as a pressing concern. This study explores the various complex difficulties which contributed to the early decommissioning of IoT devices and suggests methods to improve their lifespan management. By examining factors such as security vulnerabilities, user awareness gaps, and the influence of fashion-driven technology trends, the paper underscores the need for legislative interventions, consumer education, and industry accountability. Additionally, it explores innovative approaches to improving IoT longevity, including the integration of sustainability considerations into architectural design through requirements engineering methodologies. Furthermore, the paper discusses the potential of distributed ledger technology, or blockchain, to promote transparent and decentralized processes for device provisioning and tracking. This study promotes a sustainable IoT ecosystem by integrating technology innovation, legal change, and social awareness to reduce environmental impact and enhance resilience for the digital future