Goto

Collaborating Authors

 Enterprise Applications: Overviews


Towards Autonomous Supply Chains: Definition, Characteristics, Conceptual Framework, and Autonomy Levels

arXiv.org Artificial Intelligence

Recent global disruptions, such as the pandemic and geopolitical conflicts, have profoundly exposed vulnerabilities in traditional supply chains, requiring exploration of more resilient alternatives. Autonomous supply chains (ASCs) have emerged as a potential solution, offering increased visibility, flexibility, and resilience in turbulent trade environments. Despite discussions in industry and academia over several years, ASCs lack well-established theoretical foundations. This paper addresses this research gap by presenting a formal definition of ASC along with its defining characteristics and auxiliary concepts. We propose a layered conceptual framework called the MIISI model. An illustrative case study focusing on the meat supply chain demonstrates an initial ASC implementation based on this conceptual model. Additionally, we introduce a seven-level supply chain autonomy reference model, delineating a trajectory towards achieving a full supply chain autonomy. Recognising that this work represents an initial endeavour, we emphasise the need for continued exploration in this emerging domain. We anticipate that this work will stimulate further research, both theoretical and technical, and contribute to the continual evolution of ASCs.


Mining Java Memory Errors using Subjective Interesting Subgroups with Hierarchical Targets

arXiv.org Artificial Intelligence

Software applications, especially Enterprise Resource Planning (ERP) systems, are crucial to the day-to-day operations of many industries. Therefore, it is essential to maintain these systems effectively using tools that can identify, diagnose, and mitigate their incidents. One promising data-driven approach is the Subgroup Discovery (SD) technique, a data mining method that can automatically mine incident datasets and extract discriminant patterns to identify the root causes of issues. However, current SD solutions have limitations in handling complex target concepts with multiple attributes organized hierarchically. To illustrate this scenario, we examine the case of Java out-of-memory incidents among several possible applications. We have a dataset that describes these incidents, including their context and the types of Java objects occupying memory when it reaches saturation, with these types arranged hierarchically. This scenario inspires us to propose a novel Subgroup Discovery approach that can handle complex target concepts with hierarchies. To achieve this, we design a pattern syntax and a quality measure that ensure the identified subgroups are relevant, non-redundant, and resilient to noise. To achieve the desired quality measure, we use the Subjective Interestingness model that incorporates prior knowledge about the data and promotes patterns that are both informative and surprising relative to that knowledge. We apply this framework to investigate out-of-memory errors and demonstrate its usefulness in incident diagnosis. To validate the effectiveness of our approach and the quality of the identified patterns, we present an empirical study. The source code and data used in the evaluation are publicly accessible, ensuring transparency and reproducibility.


Fairness and Bias in Algorithmic Hiring

arXiv.org Artificial Intelligence

Employers are adopting algorithmic hiring technology throughout the recruitment pipeline. Algorithmic fairness is especially applicable in this domain due to its high stakes and structural inequalities. Unfortunately, most work in this space provides partial treatment, often constrained by two competing narratives, optimistically focused on replacing biased recruiter decisions or pessimistically pointing to the automation of discrimination. Whether, and more importantly what types of, algorithmic hiring can be less biased and more beneficial to society than low-tech alternatives currently remains unanswered, to the detriment of trustworthiness. This multidisciplinary survey caters to practitioners and researchers with a balanced and integrated coverage of systems, biases, measures, mitigation strategies, datasets, and legal aspects of algorithmic hiring and fairness. Our work supports a contextualized understanding and governance of this technology by highlighting current opportunities and limitations, providing recommendations for future work to ensure shared benefits for all stakeholders.


AI & Blockchain as sustainable teaching and learning tools to cope with the 4IR

arXiv.org Artificial Intelligence

The Fourth Industrial Revolution (4IR) is transforming the way we live and work, and education is no exception. To cope with the challenges of 4IR, there is a need for innovative and sustainable teaching and learning tools. AI and block chain technologies hold great promise in this regard, with potential benefits such as personalized learning, secure credentialing, and decentralized learning networks. This paper presents a review of existing research on AI and block chain in education, analyzing case studies and exploring the potential benefits and challenges of these technologies. The paper also suggests a unique model for integrating AI and block chain into sustainable teaching and learning practices. Future research directions are discussed, including the need for more empirical studies and the exploration of ethical and social implications. The key summary of this discussion is that, by enhancing accessibility, efficacy, and security in education, AI and blockchain have the potential to revolutionise the field. In order to ensure that students can benefit from these potentially game-changing technologies as technology develops, it will be crucial to find ways to harness its power while minimising hazards. Overall, this paper highlights the potential of AI and block chain as sustainable tools for teaching and learning in the 4IR era and their respective advantages, issues and future prospects have been discussed in this writing.


On-Premise AIOps Infrastructure for a Software Editor SME: An Experience Report

arXiv.org Artificial Intelligence

Information Technology has become a critical component in various industries, leading to an increased focus on software maintenance and monitoring. With the complexities of modern software systems, traditional maintenance approaches have become insufficient. The concept of AIOps has emerged to enhance predictive maintenance using Big Data and Machine Learning capabilities. However, exploiting AIOps requires addressing several challenges related to the complexity of data and incident management. Commercial solutions exist, but they may not be suitable for certain companies due to high costs, data governance issues, and limitations in covering private software. This paper investigates the feasibility of implementing on-premise AIOps solutions by leveraging open-source tools. We introduce a comprehensive AIOps infrastructure that we have successfully deployed in our company, and we provide the rationale behind different choices that we made to build its various components. Particularly, we provide insights into our approach and criteria for selecting a data management system and we explain its integration. Our experience can be beneficial for companies seeking to internally manage their software maintenance processes with a modern AIOps approach.


Review of feedback in Automated Essay Scoring

arXiv.org Artificial Intelligence

The first automated essay scoring system was developed 50 years ago. Automated essay scoring systems are developing into systems with richer functions than the previous simple scoring systems. Its purpose is not only to score essays but also as a learning tool to improve the writing skill of users. Feedback is the most important aspect of making an automated essay scoring system useful in real life. The importance of feedback was already emphasized in the first AES system. This paper reviews research on feedback including different feedback types and essay traits on automated essay scoring. We also reviewed the latest case studies of the automated essay scoring system that provides feedback.


Accessible Interfaces for the Development and Deployment of Robotic Platforms

arXiv.org Artificial Intelligence

Accessibility is one of the most important features in the design of robots and their interfaces. This thesis proposes methods that improve the accessibility of robots for three different target audiences: consumers, researchers, and learners. In order for humans and robots to work together effectively, they both must be able to communicate with each other. We tackle the problem of generating route instructions that are readily understandable by novice humans for the navigation of a priori unknown indoor environments. We then move on to the related problem of enabling robots to understand natural language utterances in the context of learning to operate articulated objects (e.g., fridges, drawers) by leveraging kinematic models. Next, we turn our focus to the development of accessible and reproducible robotic platforms for scientific research. We propose a new concept for reproducible robotics research that integrates development and benchmarking, so that reproducibility is obtained "by design" from the beginning of the research and development process. We then propose a framework called SHARC (SHared Autonomy for Remote Collaboration), to improve accessibility for underwater robotic intervention operations. SHARC allows multiple remote scientists to efficiently plan and execute high-level sampling procedures using an underwater manipulator while deferring low-level control to the robot. Lastly, we developed the first hardware-based MOOC in AI and robotics. This course allows learners to study autonomy hands-on by making real robots make their own decisions and accomplish broadly defined tasks. We design a new robotic platform from the ground up to support this new learning experience. A fully browser-based interface, based on leading tools and technologies for code development, testing, validation, and deployment serves to maximize the accessibility of these educational resources.


New methods for new data? An overview and illustration of quantitative inductive methods for HRM research

arXiv.org Artificial Intelligence

"Data is the new oil", in short, data would be the essential source of the ongoing fourth industrial revolution, which has led some commentators to assimilate too quickly the quantity of data to a source of wealth in itself, and consider the development of big data as an quasi direct cause of profit. Human resources management is not escaping this trend, and the accumulation of large amounts of data on employees is perceived by some entrepreneurs as a necessary and sufficient condition for the construction of predictive models of complex work behaviors such as absenteeism or job performance. In fact, the analogy is somewhat misleading: unlike oil, there are no major issues here concerning the production of data (whose flows are generated continuously and at low cost by various information systems), but rather their ''refining'', i.e. the operations necessary to transform this data into a useful product, namely into knowledge. This transformation is where the methodological challenges of data valuation lie, both for practitioners and for academic researchers. Considerations on the methods applicable to take advantage of the possibilities offered by these massive data are relatively recent, and often highlight the disruptive aspect of the current ''data deluge'' to point out that this evolution would be the source of a revival of empiricism in a ''fourth paradigm'' based on the intensive and ''agnostic'' exploitation of massive amounts of data in order to bring out new knowledge, following a purely inductive logic. Although we do not adopt this speculative point of view, it is clear that data-driven approaches are scarce in quantitative HRM studies. However, there are well-established methods, particularly in the field of data mining, which are based on inductive approaches. This area of quantitative analysis with an inductive aim is still relatively unexplored in HRM ( apart from typological analyses). The objective of this paper is first to give an overview of data driven methods that can be used for HRM research, before proposing an empirical illustration which consists in an exploratory research combining a latent profile analysis and an exploration by Gaussian graphical models.


Leadzen AI: Making B2B Lead Generation Smarter And More Efficient

#artificialintelligence

Technology has taken another turn with the dawn of artificial Intelligence which has quickly become the topic of many companies today. Businesses are constantly searching for ways to apply this piece of technology to increase their efficiency and effectiveness. Leadzen.ai is an innovative and dynamic software company that specializes in lead generation and customer engagement solutions. The company is dedicated to helping businesses and industries to maximize their potential by providing cutting-edge technology that simplifies and streamlines the lead generation process. At Leadzen.ai they understand that the key to success in any business is having a steady stream of qualified leads. That's why they have developed a state-of-the-art lead generation platform that utilizes artificial intelligence and machine learning to generate high-quality leads quickly and efficiently.


Multi-generational labour markets: data-driven discovery of multi-perspective system parameters using machine learning

arXiv.org Artificial Intelligence

Economic issues, such as inflation, energy costs, taxes, and interest rates, are a constant presence in our daily lives and have been exacerbated by global events such as pandemics, environmental disasters, and wars. A sustained history of financial crises reveals significant weaknesses and vulnerabilities in the foundations of modern economies. Another significant issue currently is people quitting their jobs in large numbers. Moreover, many organizations have a diverse workforce comprising multiple generations posing new challenges. Transformative approaches in economics and labour markets are needed to protect our societies, economies, and planet. In this work, we use big data and machine learning methods to discover multi-perspective parameters for multi-generational labour markets. The parameters for the academic perspective are discovered using 35,000 article abstracts from the Web of Science for the period 1958-2022 and for the professionals' perspective using 57,000 LinkedIn posts from 2022. We discover a total of 28 parameters and categorised them into 5 macro-parameters, Learning & Skills, Employment Sectors, Consumer Industries, Learning & Employment Issues, and Generations-specific Issues. A complete machine learning software tool is developed for data-driven parameter discovery. A variety of quantitative and visualisation methods are applied and multiple taxonomies are extracted to explore multi-generational labour markets. A knowledge structure and literature review of multi-generational labour markets using over 100 research articles is provided. It is expected that this work will enhance the theory and practice of AI-based methods for knowledge discovery and system parameter discovery to develop autonomous capabilities and systems and promote novel approaches to labour economics and markets, leading to the development of sustainable societies and economies.