Goto

Collaborating Authors

 Game Theory: Instructional Materials


Bandit Data-driven Optimization: AI for Social Good and Beyond

arXiv.org Artificial Intelligence

The use of machine learning (ML) systems in real-world applications entails more than just a prediction algorithm. AI for social good applications, and many real-world ML tasks in general, feature an iterative process which joins prediction, optimization, and data acquisition happen in a loop. We introduce bandit data-driven optimization, the first iterative prediction-prescription framework to formally analyze this practical routine. Bandit data-driven optimization combines the advantages of online bandit learning and offline predictive analytics in an integrated framework. It offers a flexible setup to reason about unmodeled policy objectives and unforeseen consequences. We propose PROOF, the first algorithm for this framework and show that it achieves no-regret. Using numerical simulations, we show that PROOF achieves superior performance over existing baseline.


A Crash Course in Game Theory for Machine Learning: Classic and New Ideas

#artificialintelligence

Game theory is one of the most fascinating areas of mathematics that have influenced diverse fields such as economics, social sciences, biology and, obviously, computer science. Games are playing a key role in the evolution of artificial intelligence(AI). For starters, game environments are becoming a popular training mechanism in areas such as reinforcement learning or imitation learning. In theory, any multi-agent AI system can be subjected to gamified interactions between its participants. The branch of mathematics that formulates the principles of games is known as game theory.


Introduction to Online Convex Optimization

arXiv.org Machine Learning

It was written as an advanced text to serve as a basis for a graduate course, and/or as a reference to the researcher diving into this fascinating world at the intersection of optimization and machine learning. Such a course was given at the Technion in the years 2010-2014 with slight variations from year to year, and later at Princeton University in the years 2015-2016. The core material in these courses is fully covered in this book, along with exercises that allow the students to complete parts of proofs, or that were found illuminating and thought-provoking. Most of the material is given with examples of applications, which are interlaced throughout different topics. These include prediction from expert advice, portfolio selection, matrix completion and recommendation systems, SVM training and more.


Introduction to Multi-Armed Bandits

arXiv.org Artificial Intelligence

Multi-armed bandits a simple but very powerful framework for algorithms that make decisions over time under uncertainty. An enormous body of work has accumulated over the years, covered in several books and surveys. This book provides a more introductory, textbook-like treatment of the subject. Each chapter tackles a particular line of work, providing a self-contained, teachable technical introduction and a review of the more advanced results. The chapters are as follows: Stochastic bandits; Lower bounds; Bayesian Bandits and Thompson Sampling; Lipschitz Bandits; Full Feedback and Adversarial Costs; Adversarial Bandits; Linear Costs and Semi-bandits; Contextual Bandits; Bandits and Zero-Sum Games; Bandits with Knapsacks; Incentivized Exploration and Connections to Mechanism Design.



Axiomatising Incomplete Preferences through Sets of Desirable Gambles

Journal of Artificial Intelligence Research

We establish the equivalence of two very general theories: the first is the decision-theoretic formalisation of incomplete preferences based on the mixture independence axiom; the second is the theory of coherent sets of desirable gambles (bounded variables) developed in the context of imprecise probability and extended here to vector-valued gambles. Such an equivalence allows us to analyse the theory of incomplete preferences from the point of view of desirability. Among other things, this leads us to uncover an unexpected and clarifying relation: that the notion of `state independence'---the traditional assumption that we can have separate models for beliefs (probabilities) and values (utilities)---coincides with that of `strong independence' in imprecise probability; this connection leads us also to propose much weaker, and arguably more realistic, notions of state independence. Then we simplify the treatment of complete beliefs and values by putting them on a more equal footing. We study the role of the Archimedean condition---which allows us to actually talk of expected utility---, identify some weaknesses and propose alternatives that solve these. More generally speaking, we show that desirability is a valuable alternative foundation to preferences for decision theory that streamlines and unifies a number of concepts while preserving great generality. In addition, the mentioned equivalence shows for the first time how to extend the theory of desirability to imprecise non-linear utility, thus enabling us to formulate one of the most powerful self-consistent theories of reasoning and decision-making available today.


Algorithmic Game Theory, Lecture 1 (Introduction)

#artificialintelligence

Lecture 1 of Tim Roughgarden's Algorithmic Game Theory class at Stanford (Autumn 2013) Class description: Topics at the interface of computer science and game theory such as: algorithmic mechanism design; combinatorial auctions; computation of Nash equilibria and relevant complexity theory; congestion and potential games; cost sharing; game theory and the Internet; matching markets; network formation; online learning algorithms; price of anarchy; prior-free auctions; selfish routing; sponsored search.


Game-Theoretic Question Selection for Tests

Journal of Artificial Intelligence Research

Conventionally, the questions on a test are assumed to be kept secret from test takers until the test. However, for tests that are taken on a large scale, particularly asynchronously, this is very hard to achieve. For example, TOEFL iBT and driver's license test questions are easily found online. This also appears likely to become an issue for Massive Open Online Courses (MOOCs, as offered for example by Coursera, Udacity, and edX). Specifically, the test result may not reflect the true ability of a test taker if questions are leaked beforehand. In this paper, we take the loss of confidentiality as a fact. Even so, not all hope is lost as the test taker can memorize only a limited set of questions' answers, and the tester can randomize which questions to let appear on the test. We model this as a Stackelberg game, where the tester commits to a mixed strategy and the follower responds. Informally, the goal of the tester is to best reveal the true ability of a test taker, while the test taker tries to maximize the test result (pass probability or score). We provide an exponential-size linear program formulation that computes the optimal test strategy, prove several NP-hardness results on computing optimal test strategies in general, and give efficient algorithms for special cases (scored tests and single-question tests). Experiments are also provided for those proposed algorithms to show their scalability and the increase of the tester's utility relative to that of the uniform-at-random strategy. The increase is quite significant when questions have some correlation---for example, when a test taker who can solve a harder question can always solve easier questions.


Keeping it Real: Using Real-World Problems to Teach AI to Diverse Audiences

AI Magazine

In recent years, AI-based applications have increasingly been used in real-world domains. For example, game theory-based decision aids have been successfully deployed in various security settings to protect ports, airports, and wildlife. This article describes our unique problem-to-project educational approach that used games rooted in real-world issues to teach AI concepts to diverse audiences. Specifically, our educational program began by presenting real-world security issues, and progressively introduced complex AI concepts using lectures, interactive exercises, and ultimately hands-on games to promote learning. We describe our experience in applying this approach to several audiences, including students of an urban public high school, university undergraduates, and security domain experts who protect wildlife. We evaluated our approach based on results from the games and participant surveys.


Universal Scalable Robust Solvers from Computational Information Games and fast eigenspace adapted Multiresolution Analysis

arXiv.org Machine Learning

We show how the discovery of robust scalable numerical solvers for arbitrary bounded linear operators can be automated as a Game Theory problem by reformulating the process of computing with partial information and limited resources as that of playing underlying hierarchies of adversarial information games. When the solution space is a Banach space $B$ endowed with a quadratic norm $\|\cdot\|$, the optimal measure (mixed strategy) for such games (e.g. the adversarial recovery of $u\in B$, given partial measurements $[\phi_i, u]$ with $\phi_i\in B^*$, using relative error in $\|\cdot\|$-norm as a loss) is a centered Gaussian field $\xi$ solely determined by the norm $\|\cdot\|$, whose conditioning (on measurements) produces optimal bets. When measurements are hierarchical, the process of conditioning this Gaussian field produces a hierarchy of elementary bets (gamblets). These gamblets generalize the notion of Wavelets and Wannier functions in the sense that they are adapted to the norm $\|\cdot\|$ and induce a multi-resolution decomposition of $B$ that is adapted to the eigensubspaces of the operator defining the norm $\|\cdot\|$. When the operator is localized, we show that the resulting gamblets are localized both in space and frequency and introduce the Fast Gamblet Transform (FGT) with rigorous accuracy and (near-linear) complexity estimates. As the FFT can be used to solve and diagonalize arbitrary PDEs with constant coefficients, the FGT can be used to decompose a wide range of continuous linear operators (including arbitrary continuous linear bijections from $H^s_0$ to $H^{-s}$ or to $L^2$) into a sequence of independent linear systems with uniformly bounded condition numbers and leads to $\mathcal{O}(N \operatorname{polylog} N)$ solvers and eigenspace adapted Multiresolution Analysis (resulting in near linear complexity approximation of all eigensubspaces).