Goto

Collaborating Authors

 Country


A Goal-Directed Implementation of Query Answering for Hybrid MKNF Knowledge Bases

arXiv.org Artificial Intelligence

Ontologies and rules are usually loosely coupled in knowledge representation formalisms. In fact, ontologies use open-world reasoning while the leading semantics for rules use non-monotonic, closed-world reasoning. One exception is the tightly-coupled framework of Minimal Knowledge and Negation as Failure (MKNF), which allows statements about individuals to be jointly derived via entailment from an ontology and inferences from rules. Nonetheless, the practical usefulness of MKNF has not always been clear, although recent work has formalized a general resolution-based method for querying MKNF when rules are taken to have the well-founded semantics, and the ontology is modeled by a general oracle. That work leaves open what algorithms should be used to relate the entailments of the ontology and the inferences of rules. In this paper we provide such algorithms, and describe the implementation of a query-driven system, CDF-Rules, for hybrid knowledge bases combining both (non-monotonic) rules under the well-founded semantics and a (monotonic) ontology, represented by a CDF Type-1 (ALQ) theory. To appear in Theory and Practice of Logic Programming (TPLP)


Temporal Autoencoding Restricted Boltzmann Machine

arXiv.org Machine Learning

Much work has been done refining and characterizing the receptive fields learned by deep learning algorithms. A lot of this work has focused on the development of Gabor-like filters learned when enforcing sparsity constraints on a natural image dataset. Little work however has investigated how these filters might expand to the temporal domain, namely through training on natural movies. Here we investigate exactly this problem in established temporal deep learning algorithms as well as a new learning paradigm suggested here, the Temporal Autoencoding Restricted Boltzmann Machine (TARBM).


Understanding the Interaction between Interests, Conversations and Friendships in Facebook

arXiv.org Machine Learning

In this paper, we explore salient questions about user interests, conversations and friendships in the Facebook social network, using a novel latent space model that integrates several data types. A key challenge of studying Facebook's data is the wide range of data modalities such as text, network links, and categorical labels. Our latent space model seamlessly combines all three data modalities over millions of users, allowing us to study the interplay between user friendships, interests, and higher-order network-wide social trends on Facebook. The recovered insights not only answer our initial questions, but also reveal surprising facts about user interests in the context of Facebook's ecosystem. We also confirm that our results are significant with respect to evidential information from the study subjects.


Empirical Normalization for Quadratic Discriminant Analysis and Classifying Cancer Subtypes

arXiv.org Machine Learning

We introduce a new discriminant analysis method (Empirical Discriminant Analysis or EDA) for binary classification in machine learning. Given a dataset of feature vectors, this method defines an empirical feature map transforming the training and test data into new data with components having Gaussian empirical distributions. This map is an empirical version of the Gaussian copula used in probability and mathematical finance. The purpose is to form a feature mapped dataset as close as possible to Gaussian, after which standard quadratic discriminants can be used for classification. We discuss this method in general, and apply it to some datasets in computational biology.


Learning Onto-Relational Rules with Inductive Logic Programming

arXiv.org Artificial Intelligence

Rules complement and extend ontologies on the Semantic Web. We refer to these rules as onto-relational since they combine DL-based ontology languages and Knowledge Representation formalisms supporting the relational data model within the tradition of Logic Programming and Deductive Databases. Rule authoring is a very demanding Knowledge Engineering task which can be automated though partially by applying Machine Learning algorithms. In this chapter we show how Inductive Logic Programming (ILP), born at the intersection of Machine Learning and Logic Programming and considered as a major approach to Relational Learning, can be adapted to Onto-Relational Learning. For the sake of illustration, we provide details of a specific Onto-Relational Learning solution to the problem of learning rule-based definitions of DL concepts and roles with ILP.


Recognizing Static Signs from the Brazilian Sign Language: Comparing Large-Margin Decision Directed Acyclic Graphs, Voting Support Vector Machines and Artificial Neural Networks

arXiv.org Machine Learning

In this paper, we explore and detail our experiments in a high-dimensionality, multi-class image classification problem often found in the automatic recognition of Sign Languages. Here, our efforts are directed towards comparing the characteristics, advantages and drawbacks of creating and training Support Vector Machines disposed in a Directed Acyclic Graph and Artificial Neural Networks to classify signs from the Brazilian Sign Language (LIBRAS). We explore how the different heuristics, hyperparameters and multi-class decision schemes affect the performance, efficiency and ease of use for each classifier. We provide hyperparameter surface maps capturing accuracy and efficiency, comparisons between DDAGs and 1-vs-1 SVMs, and effects of heuristics when training ANNs with Resilient Backpropagation. We report statistically significant results using Cohen's Kappa statistic for contingency tables.


Learning mixtures of spherical Gaussians: moment methods and spectral decompositions

arXiv.org Machine Learning

This work provides a computationally efficient and statistically consistent moment-based estimator for mixtures of spherical Gaussians. Under the condition that component means are in general position, a simple spectral decomposition technique yields consistent parameter estimates from low-order observable moments, without additional minimum separation assumptions needed by previous computationally efficient estimation procedures. Thus computational and information-theoretic barriers to efficient estimation in mixture models are precluded when the mixture components have means in general position and spherical covariances. Some connections are made to estimation problems related to independent component analysis.


The Bayesian Bridge

arXiv.org Machine Learning

We propose the Bayesian bridge estimator for regularized regression and classification. Two key mixture representations for the Bayesian bridge model are developed: (1) a scale mixture of normals with respect to an alpha-stable random variable; and (2) a mixture of Bartlett--Fejer kernels (or triangle densities) with respect to a two-component mixture of gamma random variables. Both lead to MCMC methods for posterior simulation, and these methods turn out to have complementary domains of maximum efficiency. The first representation is a well known result due to West (1987), and is the better choice for collinear design matrices. The second representation is new, and is more efficient for orthogonal problems, largely because it avoids the need to deal with exponentially tilted stable random variables. It also provides insight into the multimodality of the joint posterior distribution, a feature of the bridge model that is notably absent under ridge or lasso-type priors. We prove a theorem that extends this representation to a wider class of densities representable as scale mixtures of betas, and provide an explicit inversion formula for the mixing distribution. The connections with slice sampling and scale mixtures of normals are explored. On the practical side, we find that the Bayesian bridge model outperforms its classical cousin in estimation and prediction across a variety of data sets, both simulated and real. We also show that the MCMC for fitting the bridge model exhibits excellent mixing properties, particularly for the global scale parameter. This makes for a favorable contrast with analogous MCMC algorithms for other sparse Bayesian models. All methods described in this paper are implemented in the R package BayesBridge. An extensive set of simulation results are provided in two supplemental files.


Selective Transfer Learning for Cross Domain Recommendation

arXiv.org Machine Learning

Collaborative filtering (CF) aims to predict users' ratings on items according to historical user-item preference data. In many real-world applications, preference data are usually sparse, which would make models overfit and fail to give accurate predictions. Recently, several research works show that by transferring knowledge from some manually selected source domains, the data sparseness problem could be mitigated. However for most cases, parts of source domain data are not consistent with the observations in the target domain, which may misguide the target domain model building. In this paper, we propose a novel criterion based on empirical prediction error and its variance to better capture the consistency across domains in CF settings. Consequently, we embed this criterion into a boosting framework to perform selective knowledge transfer. Comparing to several state-of-the-art methods, we show that our proposed selective transfer learning framework can significantly improve the accuracy of rating prediction tasks on several real-world recommendation tasks.


Large-Scale Sparse Principal Component Analysis with Application to Text Data

arXiv.org Machine Learning

Sparse PCA provides a linear combination of small number of features that maximizes variance across data. Although Sparse PCA has apparent advantages compared to PCA, such as better interpretability, it is generally thought to be computationally much more expensive. In this paper, we demonstrate the surprising fact that sparse PCA can be easier than PCA in practice, and that it can be reliably applied to very large data sets. This comes from a rigorous feature elimination pre-processing result, coupled with the favorable fact that features in real-life data typically have exponentially decreasing variances, which allows for many features to be eliminated. We introduce a fast block coordinate ascent algorithm with much better computational complexity than the existing first-order ones. We provide experimental results obtained on text corpora involving millions of documents and hundreds of thousands of features. These results illustrate how Sparse PCA can help organize a large corpus of text data in a user-interpretable way, providing an attractive alternative approach to topic models.