Country
A Rotation and Translation Invariant Discrete Saliency Network
Williams, Lance R., Zweck, John W.
We describe a neural network which enhances and completes salient closed contours. Our work is different from all previous work in three important ways. First, like the input provided to V1 by LGN, the input to our computation is isotropic. That is, the input is composed of spots not edges. Second, our network computes a well defined function of the input based on a distribution of closed contours characterized by a random process. Third, even though our computation is implemented in a discrete network, its output is invariant to continuous rotations and translations of the input pattern.
The Concave-Convex Procedure (CCCP)
Yuille, Alan L., Rangarajan, Anand
This paper describes a simple geometrical Concave-Convex procedure (CCCP) for constructing discrete time dynamical systems which can be guaranteed to decrease almost any global optimization/energy function (see technical conditions in section (2)). We prove that there is a relationship between CCCP and optimization techniques based on introducing auxiliary variables using Legendre transforms. We distinguish between Legendre min-max and Legendre minimization. In the former, see [6], the introduction of auxiliary variables converts the problem to a min-max problem where the goal is to find a saddle point. By contrast, in Legendre minimization, see [8], the problem remains a minimization one (and so it becomes easier to analyze convergence).
On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes
Ng, Andrew Y., Jordan, Michael I.
Discriminative classifiers model the posterior p(ylx) directly, or learn a direct map from inputs x to the class labels. There are several compelling reasons for using discriminative rather than generative classifiers, one of which, succinctly articulated by Vapnik [6], is that "one should solve the [classification] problem directly and never solve a more general problem as an intermediate step [such as modeling p(xly)]." Indeed, leaving aside computational issues and matters such as handling missing data, the prevailing consensus seems to be that discriminative classifiers are almost always to be preferred to generative ones. Another piece of prevailing folk wisdom is that the number of examples needed to fit a model is often roughly linear in the number of free parameters of a model. This has its theoretical basis in the observation that for "many" models, the VC dimension is roughly linear or at most some low-order polynomial in the number of parameters (see, e.g., [1, 3]), and it is known that sample complexity in the discriminative setting is linear in the VC dimension [6]. In this paper, we study empirically and theoretically the extent to which these beliefs are true. A parametric family of probabilistic models p(x, y) can be fit either to optimize the joint likelihood of the inputs and the labels, or fit to optimize the conditional likelihood p(ylx), or even fit to minimize the 0-1 training error obtained by thresholding p(ylx) to make predictions.
Tempo tracking and rhythm quantization by sequential Monte Carlo
Cemgil, Ali Taylan, Kappen, Bert
We present a probabilistic generative model for timing deviations in expressive music. The structure of the proposed model is equivalent to a switching state space model. We formulate two well known music recognition problems, namely tempo tracking and automatic transcription (rhythm quantization) as filtering and maximum a posteriori (MAP) state estimation tasks. The inferences are carried out using sequential Monte Carlo integration (particle filtering) techniques. For this purpose, we have derived a novel Viterbi algorithm for Rao-Blackwellized particle filters, where a subset of the hidden variables is integrated out.
Prodding the ROC Curve: Constrained Optimization of Classifier Performance
Mozer, Michael C., Dodier, Robert, Colagrosso, Michael D., Guerra-Salcedo, Cesar, Wolniewicz, Richard
When designing a two-alternative classifier, one ordinarily aims to maximize the classifier's ability to discriminate between members of the two classes. We describe a situation in a real-world business application of machine-learning prediction in which an additional constraint is placed on the nature of the solution: that the classifier achieve a specified correct acceptance or correct rejection rate (i.e., that it achieve a fixed accuracy on members of one class or the other). Our domain is predicting churn in the telecommunications industry. Churn refers to customers who switch from one service provider to another. We propose four algorithms for training a classifier subject to this domain constraint, and present results showing that each algorithm yields a reliable improvement in performance.
A Dynamic HMM for On-line Segmentation of Sequential Data
Kohlmorgen, Jens, Lemm, Steven
We propose a novel method for the analysis of sequential data that exhibits an inherent mode switching. In particular, the data might be a non-stationary time series from a dynamical system that switches between multiple operating modes. Unlike other approaches, our method processes the data incrementally and without any training of internal parameters. We use an HMM with a dynamically changing number of states and an online variant of the Viterbi algorithm that performs an unsupervised segmentation and classification of the data on-the-fly, i.e. the method is able to process incoming data in real-time. The main idea of the approach is to track and segment changes of the probability density of the data in a sliding window on the incoming data stream.
Modeling the Modulatory Effect of Attention on Human Spatial Vision
Itti, Laurent, Braun, Jochen, Koch, Christof
We present new simulation results, in which a computational model of interacting visual neurons simultaneously predicts the modulation of spatial vision thresholds by focal visual attention, for five dual-task human psychophysics experiments. This new study complements our previous findings that attention activates a winnertake-all competition among early visual neurons within one cortical hypercolumn. This "intensified competition" hypothesis assumed that attention equally affects all neurons, and yielded two singleunit predictions: an increase in gain and a sharpening of tuning with attention. While both effects have been separately observed in electrophysiology, no single-unit study has yet shown them simultaneously. Hence, we here explore whether our model could still predict our data if attention might only modulate neuronal gain, but do so non-uniformly across neurons and tasks. Specifically, we investigate whether modulating the gain of only the neurons that are loudest, best-tuned, or most informative about the stimulus, or of all neurons equally but in a task-dependent manner, may account for the data. We find that none of these hypotheses yields predictions as plausible as the intensified competition hypothesis, hence providing additional support for our original findings.
A Parallel Mixture of SVMs for Very Large Scale Problems
Collobert, Ronan, Bengio, Samy, Bengio, Yoshua
However, SVMs require to solve a quadratic optimization problem which needs resources that are at least quadratic in the number of training examples, and it is thus hopeless to try solving problems having millions of examples using classical SVMs. In order to overcome this drawback, we propose in this paper to use a mixture of several SVMs, each of them trained only on a part of the dataset. The idea of an SVM mixture is not new, although previous attempts such as Kwok's paper on Support Vector Mixtures [5] did not train the SVMs on part of the dataset but on the whole dataset and hence could not overcome the'Part of this work has been done while Ronan Collobert was at IDIAP, CP 592, rue du Simplon 4, 1920 Martigny, Switzerland.
Learning from Infinite Data in Finite Time
Domingos, Pedro, Hulten, Geoff
We propose the following general method for scaling learning algorithms to arbitrarily large data sets. Upper-bound the loss L(Mii' M oo) between them as a function of ii, and then minimize the algorithm's time complexity f(ii) subject to the constraint that L(Moo, Mii) be at most f with probability at most 8. We apply this method to the EM algorithm for mixtures of Gaussians. Preliminary experiments on a series of large data sets provide evidence of the potential of this approach. On the other hand, they require large computational resources to learn from.
Geometrical Singularities in the Neuromanifold of Multilayer Perceptrons
Amari, Shun-ichi, Park, Hyeyoung, Ozeki, Tomoko
Singularities are ubiquitous in the parameter space of hierarchical models such as multilayer perceptrons. At singularities, the Fisher information matrix degenerates, and the Cramer-Rao paradigm does no more hold, implying that the classical model selection theory such as AIC and MDL cannot be applied. It is important to study the relation between the generalization error and the training error at singularities. The present paper demonstrates a method of analyzing these errors both for the maximum likelihood estimator and the Bayesian predictive distribution in terms of Gaussian random fields, by using simple models. 1 Introduction A neural network is specified by a number of parameters which are synaptic weights and biases. Learning takes place by modifying these parameters from observed input-output examples.