Country
Theory-Based Causal Inference
Tenenbaum, Joshua B., Griffiths, Thomas L.
People routinely make sophisticated causal inferences unconsciously, effortlessly, and from very little data - often from just one or a few observations. We argue that these inferences can be explained as Bayesian computations over a hypothesis space of causal graphical models, shaped by strong top-down prior knowledge in the form of intuitive theories.
How to Combine Color and Shape Information for 3D Object Recognition: Kernels do the Trick
This paper presents a kernel method that allows to combine color and shape information for appearance-based object recognition. It doesn't require to define a new common representation, but use the power of kernels to combine different representations together in an effective manner. These results are achieved using results of statistical mechanics of spin glasses combined with Markov random fields via kernel functions. Experiments show an increase in recognition rate up to 5.92% with respect to conventional strategies.
On the Complexity of Learning the Kernel Matrix
Bousquet, Olivier, Herrmann, Daniel
We investigate data based procedures for selecting the kernel when learning with Support Vector Machines. We provide generalization error bounds by estimating the Rademacher complexities of the corresponding function classes. In particular we obtain a complexity bound for function classes induced by kernels with given eigenvectors, i.e., we allow to vary the spectrum and keep the eigenvectors fix. This bound is only a logarithmic factor bigger than the complexity of the function class induced by a single kernel. However, optimizing the margin over such classes leads to overfitting. We thus propose a suitable way of constraining the class. We use an efficient algorithm to solve the resulting optimization problem, present preliminary experimental results, and compare them to an alignment-based approach.
Learning a Forward Model of a Reflex
Porr, Bernd, Wรถrgรถtter, Florentin
We develop a systems theoretical treatment of a behavioural system that interacts with its environment in a closed loop situation such that its motor actions influence its sensor inputs. The simplest form of a feedback is a reflex. Reflexes occur always "too late"; i.e., only after a (unpleasant, painful, dangerous) reflex-eliciting sensor event has occurred. This defines an objective problem which can be solved if another sensor input exists which can predict the primary reflex and can generate an earlier reaction. In contrast to previous approaches, our linear learning algorithm allows for an analytical proof that this system learns to apply feedforward control with the result that slow feedback loops are replaced by their equivalent feed-forward controller creating a forward model. In other words, learning turns the reactive system into a proactive system. By means of a robot implementation we demonstrate the applicability of the theoretical results which can be used in a variety of different areas in physics and engineering.
Multiple Cause Vector Quantization
Ross, David A., Zemel, Richard S.
We propose a model that can learn parts-based representations of highdimensional data. Our key assumption is that the dimensions of the data can be separated into several disjoint subsets, or factors, which take on values independently of each other. We assume each factor has a small number of discrete states, and model it using a vector quantizer. The selected states of each factor represent the multiple causes of the input. Given a set of training examples, our model learns the association of data dimensions with factors, as well as the states of each VQ. Inference and learning are carried out efficiently via variational algorithms.
Combining Features for BCI
Dornhege, Guido, Blankertz, Benjamin, Curio, Gabriel, Mรผller, Klaus-Robert
Recently, interest is growing to develop an effective communication interface connecting the human brain to a computer, the'Brain-Computer Interface' (BCI). One motivation of BCI research is to provide a new communication channel substituting normal motor output in patients with severe neuromuscular disabilities. In the last decade, various neurophysiological cortical processes, such as slow potential shifts, movement related potentials (MRPs) or event-related desynchronization (ERD) of spontaneous EEG rhythms, were shown to be suitable for BCI, and, consequently, different independent approaches of extracting BCI-relevant EEGfeatures for single-trial analysis are under investigation. Here, we present and systematically compare several concepts for combining such EEGfeatures to improve the single-trial classification. Feature combinations are evaluated on movement imagination experiments with 3 subjects where EEGfeatures are based on either MRPs or ERD, or both. Those combination methods that incorporate the assumption that the single EEGfeatures are physiologically mutually independent outperform the plain method of'adding' evidence where the single-feature vectors are simply concatenated. These results strengthen the hypothesis that MRP and ERD reflect at least partially independent aspects of cortical processes and open a new perspective to boost BCI effectiveness.
Regularized Greedy Importance Sampling
Southey, Finnegan, Schuurmans, Dale, Ghodsi, Ali
Greedy importance sampling is an unbiased estimation technique that reduces the variance of standard importance sampling by explicitly searching for modes in the estimation objective. Previous work has demonstrated the feasibility of implementing this method and proved that the technique is unbiased in both discrete and continuous domains. In this paper we present a reformulation of greedy importance sampling that eliminates the free parameters from the original estimator, and introduces a new regularization strategy that further reduces variance without compromising unbiasedness. The resulting estimator is shown to be effective for difficult estimation problems arising in Markov random field inference. In particular, improvements are achieved over standard MCMC estimators when the distribution has multiple peaked modes.
Fast Transformation-Invariant Factor Analysis
Kannan, Anitha, Jojic, Nebojsa, Frey, Brendan
Dimensionality reduction techniques such as principal component analysis and factor analysis are used to discover a linear mapping between high dimensional data samples and points in a lower dimensional subspace. In [6], Jojic and Frey introduced mixture of transformation-invariant component analyzers (MTCA) that can account for global transformations such as translations and rotations, perform clustering and learn local appearance deformations by dimensionality reduction.
Learning to Take Concurrent Actions
Rohanimanesh, Khashayar, Mahadevan, Sridhar
We investigate a general semi-Markov Decision Process (SMDP) framework for modeling concurrent decision making, where agents learn optimal plans over concurrent temporally extended actions. We introduce three types of parallel termination schemes - all, any and continue - and theoretically and experimentally compare them.
Bayesian Image Super-Resolution
Tipping, Michael E., Bishop, Christopher M.
The extraction of a single high-quality image from a set of lowresolution images is an important problem which arises in fields such as remote sensing, surveillance, medical imaging and the extraction of still images from video. Typical approaches are based on the use of cross-correlation to register the images followed by the inversion of the transformation from the unknown high resolution image to the observed low resolution images, using regularization to resolve the ill-posed nature of the inversion process. In this paper we develop a Bayesian treatment of the super-resolution problem in which the likelihood function for the image registration parameters is based on a marginalization over the unknown high-resolution image. This approach allows us to estimate the unknown point spread function, and is rendered tractable through the introduction of a Gaussian process prior over images. Results indicate a significant improvement over techniques based on MAP (maximum a-posteriori) point optimization of the high resolution image and associated registration parameters. 1 Introduction The task in super-resolution is to combine a set of low resolution images of the same scene in order to obtain a single image of higher resolution. Provided the individual low resolution images have sub-pixel displacements relative to each other, it is possible to extract high frequency details of the scene well beyond the Nyquist limit of the individual source images.