Country
Algebraic Information Geometry for Learning Machines with Singularities
Algebraic geometry is essential to learning theory. In hierarchical learning machines such as layered neural networks and gaussian mixtures, the asymptotic normality does not hold, since Fisher information matrices are singular. In this paper, the rigorous asymptotic form of the stochastic complexity is clarified based on resolution of singularities and two different problems are studied.
Learning Sparse Image Codes using a Wavelet Pyramid Architecture
Olshausen, Bruno A., Sallee, Phil, Lewicki, Michael S.
We show how a wavelet basis may be adapted to best represent natural images in terms of sparse coefficients. The wavelet basis, which may be either complete or overcomplete, is specified by a small number of spatial functions which are repeated across space and combined in a recursive fashion so as to be self-similar across scale. These functions are adapted to minimize the estimated code length under a model that assumes images are composed of a linear superposition of sparse, independent components. When adapted to natural images, the wavelet bases take on different orientations and they evenly tile the orientation domain, in stark contrast to the standard, non-oriented wavelet bases used in image compression. When the basis set is allowed to be overcomplete, it also yields higher coding efficiency than standard wavelet bases. 1 Introduction The general problem we address here is that of learning efficient codes for representing natural images.
Active Learning for Parameter Estimation in Bayesian Networks
Bayesian networks are graphical representations of probability distributions. In virtually all of the work on learning these networks, the assumption is that we are presented with a data set consisting of randomly generated instances from the underlying distribution. In many situations, however, we also have the option of active learning, where we have the possibility of guiding the sampling process by querying for certain types of samples. This paper addresses the problem of estimating the parameters of Bayesian networks in an active learning setting. We provide a theoretical framework for this problem, and an algorithm that chooses which active learning queries to generate based on the model learned so far. We present experimental results showing that our active learning algorithm can significantly reduce the need for training data in many situations.
A Gradient-Based Boosting Algorithm for Regression Problems
Zemel, Richard S., Pitassi, Toniann
Adaptive boosting methods are simple modular algorithms that operate as follows. Let 9: X -t Y be the function to be learned, where the label set Y is finite, typically binary-valued. The algorithm uses a learning procedure, which has access to n training examples, {(Xl, Y1),..., (xn, Yn)}, drawn randomly from X x Yaccording to distribution D; it outputs a hypothesis I:
Bayesian Video Shot Segmentation
Vasconcelos, Nuno, Lippman, Andrew
Prior knowledge about video structure can be used both as a means to improve the peiformance of content analysis and to extract features that allow semantic classification. We introduce statistical models for two important components of this structure, shot duration and activity, and demonstrate the usefulness of these models by introducing a Bayesian formulation for the shot segmentation problem. The new formulations is shown to extend standard thresholding methods in an adaptive and intuitive way, leading to improved segmentation accuracy.
Learning Joint Statistical Models for Audio-Visual Fusion and Segregation
III, John W. Fisher, Darrell, Trevor, Freeman, William T., Viola, Paul A.
People can understand complex auditory and visual information, often using one to disambiguate the other. Automated analysis, even at a lowlevel, faces severe challenges, including the lack of accurate statistical models for the signals, and their high-dimensionality and varied sampling rates. Previous approaches [6] assumed simple parametric models for the joint distribution which, while tractable, cannot capture the complex signal relationships. We learn the joint distribution of the visual and auditory signals using a nonparametric approach. First, we project the data into a maximally informative, low-dimensional subspace, suitable for density estimation.
Spike-Timing-Dependent Learning for Oscillatory Networks
Scarpetta, Silvia, Li, Zhaoping, Hertz, John A.
The model structure is an abstrac- tion of the hippocampus or the olfactory cortex. We propose a simple generalized Hebbian rule, using temporal-activity-dependent LTP and LTD, to encode both magnitudes and phases of oscillatory patterns into the synapses in the network. After learning, the model responds resonantly to inputs which have been learned (or, for networks which operate essentially linearly, to linear combinations of learned inputs), but negligibly to other input patterns. Encoding both amplitude and phase enhances computational capacity, for which the price is having to learn both the excitatory-to-excitatory and the excitatory-to-inhibitory connections. Our model puts contraints on the form of the learning kernal A(r) that should be experimenally observed, e.g., for small oscillation frequencies, it requires that the overall LTP dominates the overall LTD, but this requirement should be modified if the stored oscillations are of high frequencies.
The Unscented Particle Filter
Merwe, Rudolph van der, Doucet, Arnaud, Freitas, Nando de, Wan, Eric A.
In this paper, we propose a new particle filter based on sequential importance sampling. The algorithm uses a bank of unscented filters to obtain the importance proposal distribution. This proposal has two very "nice" properties. Firstly, it makes efficient use of the latest available information and, secondly, it can have heavy tails. As a result, we find that the algorithm outperforms standard particle filtering and other nonlinear filtering methods very substantially.
Noise Suppression Based on Neurophysiologically-motivated SNR Estimation for Robust Speech Recognition
Tchorz, Jürgen, Kleinschmidt, Michael, Kollmeier, Birger
For SNR-estimation, the input signal is transformed into so-called Amplitude Modulation Spectrograms (AMS), which represent both spectral and temporal characteristics of the respective analysis frame, and which imitate the representation of modulation frequencies in higher stages of the mammalian auditory system. A neural network is used to analyse AMS patterns generated from noisy speech and estimates the local SNR. Noise suppression is achieved by attenuating frequency channels according to their SNR. The noise suppression algorithm is evaluated in speakerindependent digit recognition experiments and compared to noise suppression by Spectral Subtraction. 1 Introduction One of the major problems in automatic speech recognition (ASR) systems is their lack of robustness in noise, which severely degrades their usefulness in many practical applications. Several proposals have been made to increase the robustness of ASR systems, e.g. by model compensation or more noise-robust feature extraction [1, 2]. Another method to increase robustness of ASR systems is to suppress the background noise before feature extraction. Classical approaches for single-channel noise suppression are Spectral Subtraction [3] and related schemes, e.g.