Goto

Collaborating Authors

 Country


On Iterative Krylov-Dogleg Trust-Region Steps for Solving Neural Networks Nonlinear Least Squares Problems

Neural Information Processing Systems

Our al exploits the special structure of the sum of squared error measure in Equation (1); hence, the other objective functions are outside the scope of this paper. The gradient vector and Hessian matrix are given by g g(9) JT rand H H(9) JT J S, where J is the m x n Jacobian matrix of r, and S denotes the matrix of second-derivative terms. If S is simply omitted based on the "small residual" assumption, then the Hessian matrix reduces to the Gauss-Newton model Hessian: i.e., JT J. Furthermore, a family of quasi-Newton methods can be applied to approximate term S alone, leading to the augmented Gauss-Newton model Hessian (see, for example, Mizutani [2] and references therein).


A PAC-Bayesian Margin Bound for Linear Classifiers: Why SVMs work

Neural Information Processing Systems

We present a bound on the generalisation error of linear classifiers in terms of a refined margin quantity on the training set. The result is obtained in a PAC-Bayesian framework and is based on geometrical arguments in the space of linear classifiers. The new bound constitutes an exponential improvement of the so far tightest margin bound by Shawe-Taylor et al. [8] and scales logarithmically in the inverse margin. Even in the case of less training examples than input dimensions sufficiently large margins lead to nontrivial bound values and - for maximum margins - to a vanishing complexity term. Furthermore, the classical margin is too coarse a measure for the essential quantity that controls the generalisation error: the volume ratio between the whole hypothesis space and the subset of consistent hypotheses.


New Approaches Towards Robust and Adaptive Speech Recognition

Neural Information Processing Systems

In this paper, we discuss some new research directions in automatic speech recognition (ASR), and which somewhat deviate from the usual approaches. More specifically, we will motivate and briefly describe new approaches based on multi-stream and multi/band ASR. These approaches extend the standard hidden Markov model (HMM) based approach by assuming that the different (frequency) channels representing the speech signal are processed by different (independent) "experts", each expert focusing on a different characteristic of the signal, and that the different stream likelihoods (or posteriors) are combined at some (temporal) stage to yield a global recognition output. As a further extension to multi-stream ASR, we will finally introduce a new approach, referred to as HMM2, where the HMM emission probabilities are estimated via state specific feature based HMMs responsible for merging the stream information and modeling their possible correlation.


Efficient Learning of Linear Perceptrons

Neural Information Processing Systems

The resulting combinatorial problem - finding the best agreement half-space over an input sample - is NP hard to approximate to within some constant factor. We suggest a way to circumvent this theoretical bound by introducing a new measure of success for such algorithms. An algorithm is ILmargin successful if the agreement ratio of the half-space it outputs is as good as that of any half-space once training points that are inside the ILmargins of its separating hyper-plane are disregarded. We prove crisp computational complexity results with respect to this success measure: On one hand, for every positive IL, there exist efficient (poly-time) ILmargin successful learning algorithms. On the other hand, we prove that unless P NP, there is no algorithm that runs in time polynomial in the sample size and in 1/ IL that is ILmargin successful for all IL O. 1 Introduction We consider the computational complexity of learning linear perceptrons for arbitrary (Le.


Convergence of Large Margin Separable Linear Classification

Neural Information Processing Systems

Large margin linear classification methods have been successfully applied to many applications. For a linearly separable problem, it is known that under appropriate assumptions, the expected misclassification error of the computed "optimal hyperplane" approaches zero at a rate proportional to the inverse training sample size. This rate is usually characterized by the margin and the maximum norm of the input data. In this paper, we argue that another quantity, namely the robustness of the input data distribution, also plays an important role in characterizing the convergence behavior of expected misclassification error. Based on this concept of robustness, we show that for a large margin separable linear classification problem, the expected misclassification error may converge exponentially in the number of training sample size.


Learning Winner-take-all Competition Between Groups of Neurons in Lateral Inhibitory Networks

Neural Information Processing Systems

It has long been known that lateral inhibition in neural networks can lead to a winner-take-all competition, so that only a single neuron is active at a steady state. Here we show how to organize lateral inhibition so that groups of neurons compete to be active. Given a collection of potentially overlapping groups, the inhibitory connectivity is set by a formula that can be interpreted as arising from a simple learning rule. Our analysis demonstrates that such inhibition generally results in winner-take-all competition between the given groups, with the exception of some degenerate cases. In a broader context, the network serves as a particular illustration of the general distinction between permitted and forbidden sets, which was introduced recently.


Learning Switching Linear Models of Human Motion

Neural Information Processing Systems

The human figure exhibits complex and rich dynamic behavior that is both nonlinear and time-varying. Effective models of human dynamics can be learned from motion capture data using switching linear dynamic system (SLDS) models. We present results for human motion synthesis, classification, and visual tracking using learned SLDS models. Since exact inference in SLDS is intractable, we present three approximate inference algorithms and compare their performance. In particular, a new variational inference algorithm is obtained by casting the SLDS model as a Dynamic Bayesian Network. Classification experiments show the superiority of SLDS over conventional HMM's for our problem domain.


A New Model of Spatial Representation in Multimodal Brain Areas

Neural Information Processing Systems

Most models of spatial representations in the cortex assume cells with limited receptive fields that are defined in a particular egocentric frame of reference. However, cells outside of primary sensory cortex are either gain modulated by postural input or partially shifting. We show that solving classical spatial tasks, like sensory prediction, multi-sensory integration, sensory-motor transformation and motor control requires more complicated intermediate representations that are not invariant in one frame of reference. We present an iterative basis function map that performs these spatial tasks optimally with gain modulated and partially shifting units, and tests it against neurophysiological and neuropsychological data. In order to perform an action directed toward an object, it is necessary to have a representation of its spatial location.


An Adaptive Metric Machine for Pattern Classification

Neural Information Processing Systems

Nearest neighbor classification assumes locally constant class conditional probabilities. This assumption becomes invalid in high dimensions with finite samples due to the curse of dimensionality. Severe bias can be introduced under these conditions when using the nearest neighbor rule. We propose a locally adaptive nearest neighbor classification method to try to minimize bias. We use a Chi-squared distance analysis to compute a flexible metric for producing neighborhoods that are elongated along less relevant feature dimensions and constricted along most influential ones. As a result, the class conditional probabilities tend to be smoother in the modified neighborhoods, whereby better classification performance can be achieved. The efficacy of our method is validated and compared against other techniques using a variety of real world data. 1 Introduction


Model Complexity, Goodness of Fit and Diminishing Returns

Neural Information Processing Systems

Such learning tasks can typically be characterized by the existence of a model and a loss function. A fitted model of complexity k is a function of the data points D and depends on a specific set of fitted parameters B. The loss function (goodnessof-fit) is a functional of the model and maps each specific model to a scalar used to evaluate the model, e.g., likelihood for density estimation or sum-of-squares for regression. Figure 1 illustrates a typical empirical curve for loss function versus complexity, for mixtures of Markov models fitted to a large data set of 900,000 sequences. The complexity k is the number of Markov models being used in the mixture (see Cadez et al. (2000) for further details on the model and the data set). The empirical curve has a distinctly concave appearance, with large relative gains in fit for low complexity models and much more modest relative gains for high complexity models.