Country
Sparse Multi-Task Reinforcement Learning
Calandriello, Daniele, Lazaric, Alessandro, Restelli, Marcello
In multi-task reinforcement learning (MTRL), the objective is to simultaneously learn multiple tasks and exploit their similarity to improve the performance w.r.t.\ single-task learning. In this paper we investigate the case when all the tasks can be accurately represented in a linear approximation space using the same small subset of the original (large) set of features. This is equivalent to assuming that the weight vectors of the task value functions are \textit{jointly sparse}, i.e., the set of their non-zero components is small and it is shared across tasks. Building on existing results in multi-task regression, we develop two multi-task extensions of the fitted $Q$-iteration algorithm. While the first algorithm assumes that the tasks are jointly sparse in the given representation, the second one learns a transformation of the features in the attempt of finding a more sparse representation. For both algorithms we provide a sample complexity analysis and numerical simulations.
Robust Logistic Regression and Classification
Feng, Jiashi, Xu, Huan, Mannor, Shie, Yan, Shuicheng
We consider logistic regression with arbitrary outliers in the covariate matrix. We propose a new robust logistic regression algorithm, called RoLR, that estimates the parameter through a simple linear programming procedure. We prove that RoLR is robust to a constant fraction of adversarial outliers. To the best of our knowledge, this is the first result on estimating logistic regression model when the covariate matrix is corrupted with any performance guarantees. Besides regression, we apply RoLR to solving binary classification problems where a fraction of training samples are corrupted.
Magnitude-sensitive preference formation`
Srivastava, Nisheeth, Vul, Ed, Schrater, Paul R.
Our understanding of the neural computations that underlie the ability of animals to choose among options has advanced through a synthesis of computational modeling, brain imaging and behavioral choice experiments. Yet, there remains a gulf between theories of preference learning and accounts of the real, economic choices that humans face in daily life, choices that are usually between some amount of money and an item. In this paper, we develop a theory of magnitude-sensitive preference learning that permits an agent to rationally infer its preferences for items compared with money options of different magnitudes. We show how this theory yields classical and anomalous supply-demand curves and predicts choices for a large panel of risky lotteries. Accurate replications of such phenomena without recourse to utility functions suggest that the theory proposed is both psychologically realistic and econometrically viable.
Beta-Negative Binomial Process and Exchangeable ๏ฟผRandom Partitions for Mixed-Membership Modeling
The beta-negative binomial process (BNBP), an integer-valued stochastic process, is employed to partition a count vector into a latent random count matrix. As the marginal probability distribution of the BNBP that governs the exchangeable random partitions of grouped data has not yet been developed, current inference for the BNBP has to truncate the number of atoms of the beta process. This paper introduces an exchangeable partition probability function to explicitly describe how the BNBP clusters the data points of each group into a random number of exchangeable partitions, which are shared across all the groups. A fully collapsed Gibbs sampler is developed for the BNBP, leading to a novel nonparametric Bayesian topic model that is distinct from existing ones, with simple implementation, fast convergence, good mixing, and state-of-the-art predictive performance.
Provable Submodular Minimization using Wolfe's Algorithm
Chakrabarty, Deeparnab, Jain, Prateek, Kothari, Pravesh
Owing to several applications in large scale learning and vision problems, fast submodular function minimization (SFM) has become a critical problem. Theoretically, unconstrained SFM can be performed in polynomial time (Iwata and Orlin 2009), however these algorithms are not practical. In 1976, Wolfe proposed an algorithm to find the minimum Euclidean norm point in a polytope, and in 1980, Fujishige showed how Wolfe's algorithm can be used for SFM. For general submodular functions, the Fujishige-Wolfe minimum norm algorithm seems to have the best empirical performance. Despite its good practical performance, theoretically very little is known about Wolfe's minimum norm algorithm -- to our knowledge the only result is an exponential time analysis due to Wolfe himself. In this paper we give a maiden convergence analysis of Wolfe's algorithm. We prove that in t iterations, Wolfe's algorithm returns a O(1/t)-approximate solution to the min-norm point. We also prove a robust version of Fujishige's theorem which shows that an O(1/n^2)-approximate solution to the min-norm point problem implies exact submodular minimization. As a corollary, we get the first pseudo-polynomial time guarantee for the Fujishige-Wolfe minimum norm algorithm for submodular function minimization. In particular, we show that the min-norm point algorithm solves SFM in O(n^7F^2)-time, where $F$ is an upper bound on the maximum change a single element can cause in the function value.
Learning Mixtures of Ranking Models
Awasthi, Pranjal, Blum, Avrim, Sheffet, Or, Vijayaraghavan, Aravindan
This work concerns learning probabilistic models for ranking data in a heterogeneous population.The specific problem we study is learning the parameters of a Mallows Mixture Model. Despite being widely studied, current heuristics for this problem do not have theoretical guarantees and can get stuck in bad local optima. We present the first polynomial time algorithm which provably learns the parameters ofa mixture of two Mallows models. A key component of our algorithm is a novel use of tensor decomposition techniques to learn the top-k prefix in both the rankings. Before this work, even the question of identifiability in the case of a mixture of two Mallows models was unresolved.
Expectation Backpropagation: Parameter-Free Training of Multilayer Neural Networks with Continuous or Discrete Weights
Soudry, Daniel, Hubara, Itay, Meir, Ron
Multilayer Neural Networks (MNNs) are commonly trained using gradient descent-based methods, such as BackPropagation (BP). Inference in probabilistic graphical models is often done using variational Bayes methods, such as Expectation Propagation (EP). We show how an EP based approach can also be used to train deterministic MNNs. Specifically, we approximate the posterior of the weights given the data using a โmean-fieldโ factorized distribution, in an online setting. Using online EP and the central limit theorem we find an analytical approximation to the Bayes update of this posterior, as well as the resulting Bayes estimates of the weights and outputs. Despite a different origin, the resulting algorithm, Expectation BackPropagation (EBP), is very similar to BP in form and efficiency. However, it has several additional advantages: (1) Training is parameter-free, given initial conditions (prior) and the MNN architecture. This is useful for large-scale problems, where parameter tuning is a major challenge. (2) The weights can be restricted to have discrete values. This is especially useful for implementing trained MNNs in precision limited hardware chips, thus improving their speed and energy efficiency by several orders of magnitude. We test the EBP algorithm numerically in eight binary text classification tasks. In all tasks, EBP outperforms: (1) standard BP with the optimal constant learning rate (2) previously reported state of the art. Interestingly, EBP-trained MNNs with binary weights usually perform better than MNNs with continuous (real) weights - if we average the MNN output using the inferred posterior.
Extremal Mechanisms for Local Differential Privacy
Kairouz, Peter, Oh, Sewoong, Viswanath, Pramod
Local differential privacy has recently surfaced as a strong measure of privacy in contexts where personal information remains private even from data analysts. Working in a setting where the data providers and data analysts want to maximize the utility of statistical inferences performed on the released data, we study the fundamental tradeoff between local differential privacy and information theoretic utility functions. We introduce a family of extremal privatization mechanisms, which we call staircase mechanisms, and prove that it contains the optimal privatization mechanism that maximizes utility. We further show that for all information theoretic utility functions studied in this paper, maximizing utility is equivalent to solving a linear program, the outcome of which is the optimal staircase mechanism. However, solving this linear program can be computationally expensive since it has a number of variables that is exponential in the data size. To account for this, we show that two simple staircase mechanisms, the binary and randomized response mechanisms, are universally optimal in the high and low privacy regimes, respectively, and well approximate the intermediate regime.
Learning Generative Models with Visual Attention
Tang, Yichuan, Srivastava, Nitish, Salakhutdinov, Ruslan R.
Attention has long been proposed by psychologists to be important for efficiently dealing with the massive amounts of sensory stimulus in the neocortex. Inspired by the attention models in visual neuroscience and the need for object-centered data for generative models, we propose a deep-learning based generative framework using attention. The attentional mechanism propagates signals from the region of interest in a scene to an aligned canonical representation for generative modeling. By ignoring scene background clutter, the generative model can concentrate its resources on the object of interest. A convolutional neural net is employed to provide good initializations during posterior inference which uses Hamiltonian Monte Carlo. Upon learning images of faces, our model can robustly attend to the face region of novel test subjects. More importantly, our model can learn generative models of new faces from a novel dataset of large images where the face locations are not known.
Discriminative Unsupervised Feature Learning with Convolutional Neural Networks
Dosovitskiy, Alexey, Springenberg, Jost Tobias, Riedmiller, Martin, Brox, Thomas
Current methods for training convolutional neural networks depend on large amounts of labeled samples for supervised training. In this paper we present an approach for training a convolutional neural network using only unlabeled data. We train the network to discriminate between a set of surrogate classes. Each surrogate class is formed by applying a variety of transformations to a randomly sampled 'seed' image patch. We find that this simple feature learning algorithm is surprisingly successful when applied to visual object recognition. The feature representation learned by our algorithm achieves classification results matching or outperforming the current state-of-the-art for unsupervised learning on several popular datasets (STL-10, CIFAR-10, Caltech-101).