Goto

Collaborating Authors

 Country


Concept-based Recommendations for Internet Advertisement

arXiv.org Artificial Intelligence

The problem of detecting terms that can be interesting to the advertiser is considered. If a company has already bought some advertising terms which describe certain services, it is reasonable to find out the terms bought by competing companies. A part of them can be recommended as future advertising terms to the company. The goal of this work is to propose better interpretable recommendations based on FCA and association rules.


Node discovery in a networked organization

arXiv.org Artificial Intelligence

In this paper, I present a method to solve a node discovery problem in a networked organization. Covert nodes refer to the nodes which are not observable directly. They affect social interactions, but do not appear in the surveillance logs which record the participants of the social interactions. Discovering the covert nodes is defined as identifying the suspicious logs where the covert nodes would appear if the covert nodes became overt. A mathematical model is developed for the maximal likelihood estimation of the network behind the social interactions and for the identification of the suspicious logs. Precision, recall, and F measure characteristics are demonstrated with the dataset generated from a real organization and the computationally synthesized datasets. The performance is close to the theoretical limit for any covert nodes in the networks of any topologies and sizes if the ratio of the number of observation to the number of possible communication patterns is large.


On empirical meaning of randomness with respect to a real parameter

arXiv.org Artificial Intelligence

We study the empirical meaning of randomness with respect to a family of probability distributions $P_\theta$, where $\theta$ is a real parameter, using algorithmic randomness theory. In the case when for a computable probability distribution $P_\theta$ an effectively strongly consistent estimate exists, we show that the Levin's a priory semicomputable semimeasure of the set of all $P_\theta$-random sequences is positive if and only if the parameter $\theta$ is a computable real number. The different methods for generating ``meaningful'' $P_\theta$-random sequences with noncomputable $\theta$ are discussed.


On landmark selection and sampling in high-dimensional data analysis

arXiv.org Machine Learning

In recent years, the spectral analysis of appropriately defined kernel matrices has emerged as a principled way to extract the low-dimensional structure often prevalent in high-dimensional data. Here we provide an introduction to spectral methods for linear and nonlinear dimension reduction, emphasizing ways to overcome the computational limitations currently faced by practitioners with massive datasets. In particular, a data subsampling or landmark selection process is often employed to construct a kernel based on partial information, followed by an approximate spectral analysis termed the Nystrom extension. We provide a quantitative framework to analyse this procedure, and use it to demonstrate algorithmic performance bounds on a range of practical approaches designed to optimize the landmark selection process. We compare the practical implications of these bounds by way of real-world examples drawn from the field of computer vision, whereby low-dimensional manifold structure is shown to emerge from high-dimensional video data streams.


Solving Dynamic Constraint Satisfaction Problems by Identifying Stable Features

AAAI Conferences

This paper presents a new analysis of dynamic constraint satisfaction problems (DCSPs) with finite domains and a new approach to solving them. We first show that even very small changes in a CSP, in the form of addition of constraints or changes in constraint relations, can have profound effects on search performance. These effects are reflected in the amenability of the problem to different forms of heuristic action as well as overall quality of search. In addition, classical DCSP methods perform poorly on these problems because there are sometimes no solutions similar to the original one found. We then show that the same changes do not markedly affect the locations of the major sources of contention in the problem. A technique for iterated sampling that performs a careful assessment of this property and uses the information during subsequent search, performs well even when it only uses information based on the original problem in the DCSP sequence. The result is a new approach to solving DCSPs that is based on a robust strategy for ordering variables rather than on robust solutions.


Structured Plans and Observation Reduction for Plans with Contexts

AAAI Conferences

In many real world planning domains, some observation information is optional and useless to the execution of a plan; on the other hand, information acquisition may require some kind of cost. The problem of observation reduction for strong plans has been addressed in the literature. However, observation reduction for plans with contexts (which are more general and useful than strong plans in robotics) is still a open problem. In this paper, we present an attempt to solve the problem. Our first contribution is the definition of structured plans, which can encode sequential, conditional and iterative behaviors, and is expressive enough for dealing with incomplete observation information and internal states of the agent. A second contribution is an observation reduction algorithm for plans with contexts, which can transform a plan with contexts into a structured plan that only branches on necessary observation information.


Semi-Supervised Classification using Sparse Gaussian Process Regression

AAAI Conferences

Gaussian Processes (GPs) are promising Bayesian methods for classification and regression problems. They have also been used for semi-supervised learning tasks. In this paper, we propose a new algorithm for solving semi-supervised binary classification problem using sparse GP regression (GPR) models. It is closely related to semi-supervised learning based on support vector regression (SVR) and maximum margin clustering. The proposed algorithm is simple and easy to implement. It gives a sparse solution directly unlike the SVR based algorithm. Also, the hyperparameters are estimated easily without resorting to expensive cross-validation technique. Use of sparse GPR model helps in making the proposed algorithm scalable. Preliminary results on synthetic and real-world data sets demonstrate the efficacy of the new algorithm.


Structured Plans and Observation Reduction for Plans with Contexts

AAAI Conferences

In many real world planning domains, some observation information is optional and useless to the execution of a plan; on the other hand, information acquisition may require some kind of cost. The problem of observation reduction for strong plans has been addressed in the literature. However, observation reduction for plans with contexts (which are more general and useful than strong plans in robotics) is still a open problem. In this paper, we present an attempt to solve the problem. Our first contribution is the definition of structured plans, which can encode sequential, conditional and iterative behaviors, and is expressive enough for dealing with incomplete observation information and internal states of the agent. A second contribution is an observation reduction algorithm for plans with contexts, which can transform a plan with contexts into a structured plan that only branches on necessary observation information.


Semi-Supervised Classification using Sparse Gaussian Process Regression

AAAI Conferences

Gaussian Processes (GPs) are promising Bayesian methods for classification and regression problems. They have also been used for semi-supervised learning tasks. In this paper, we propose a new algorithm for solving semi-supervised binary classification problem using sparse GP regression (GPR) models. It is closely related to semi-supervised learning based on support vector regression (SVR) and maximum margin clustering. The proposed algorithm is simple and easy to implement. It gives a sparse solution directly unlike the SVR based algorithm. Also, the hyperparameters are estimated easily without resorting to expensive cross-validation technique. Use of sparse GPR model helps in making the proposed algorithm scalable. Preliminary results on synthetic and real-world data sets demonstrate the efficacy of the new algorithm.


Semi-Supervised Classification using Sparse Gaussian Process Regression

AAAI Conferences

Gaussian Processes (GPs) are promising Bayesian methods for classification and regression problems. They have also been used for semi-supervised learning tasks. In this paper, we propose a new algorithm for solving semi-supervised binary classification problem using sparse GP regression (GPR) models. It is closely related to semi-supervised learning based on support vector regression (SVR) and maximum margin clustering. The proposed algorithm is simple and easy to implement. It gives a sparse solution directly unlike the SVR based algorithm. Also, the hyperparameters are estimated easily without resorting to expensive cross-validation technique. Use of sparse GPR model helps in making the proposed algorithm scalable. Preliminary results on synthetic and real-world data sets demonstrate the efficacy of the new algorithm.