Goto

Collaborating Authors

 Country


Submodular Optimization for Efficient Semi-supervised Support Vector Machines

arXiv.org Artificial Intelligence

In this work we present a quadratic programming approximation of the Semi-Supervised Support Vector Machine (S3VM) problem, namely approximate QP-S3VM, that can be efficiently solved using off the shelf optimization packages. We prove that this approximate formulation establishes a relation between the low density separation and the graph-based models of semi-supervised learning (SSL) which is important to develop a unifying framework for semi-supervised learning methods. Furthermore, we propose the novel idea of representing SSL problems as submodular set functions and use efficient submodular optimization algorithms to solve them. Using this new idea we develop a representation of the approximate QP-S3VM as a maximization of a submodular set function which makes it possible to optimize using efficient greedy algorithms. We demonstrate that the proposed methods are accurate and provide significant improvement in time complexity over the state of the art in the literature.


Detection and emergence

arXiv.org Artificial Intelligence

Two different conceptions of emergence are reconciled as two instances of the phenomenon of detection. In the process of comparing these two conceptions, we find that the notions of complexity and detection allow us to form a unified definition of emergence that clearly delineates the role of the observer.


Promoting scientific thinking with robots

arXiv.org Artificial Intelligence

This article describes an exemplary robot exercise which was conducted in a class for mechatronics students. The goal of this exercise was to engage students in scientific thinking and reasoning, activities which do not always play an important role in their curriculum. The robotic platform presented here is simple in its construction and is customizable to the needs of the teacher. Therefore, it can be used for exercises in many different fields of science, not necessarily related to robotics. Here we present a situation where the robot is used like an alien creature from which we want to understand its behavior, resembling an ethological research activity. This robot exercise is suited for a wide range of courses, from general introduction to science, to hardware oriented lectures.


A Dynamical Systems Approach for Static Evaluation in Go

arXiv.org Artificial Intelligence

In the paper arguments are given why the concept of static evaluation has the potential to be a useful extension to Monte Carlo tree search. A new concept of modeling static evaluation through a dynamical system is introduced and strengths and weaknesses are discussed. The general suitability of this approach is demonstrated.


Biomimetic use of genetic algorithms

arXiv.org Artificial Intelligence

Genetic algorithms are considered as an original way to solve problems, probably because of their generality and of their "blind" nature. But GAs are also unusual since the features of many implementations (among all that could be thought of) are principally led by the biological metaphor, while efficiency measurements intervene only afterwards. We propose here to examine the relevance of these biomimetic aspects, by pointing out some fundamental similarities and divergences between GAs and the genome of living beings shaped by natural selection. One of the main differences comes from the fact that GAs rely principally on the so-called implicit parallelism, while giving to the mutation/selection mechanism the second role. Such differences could suggest new ways of employing GAs on complex problems, using complex codings and starting from nearly homogeneous populations.


Solving puzzles described in English by automated translation to answer set programming and learning how to do that translation

arXiv.org Artificial Intelligence

We present a system capable of automatically solving combinatorial logic puzzles given in (simplified) English. It involves translating the English descriptions of the puzzles into answer set programming(ASP) and using ASP solvers to provide solutions of the puzzles. To translate the descriptions, we use a lambda-calculus based approach using Probabilistic Combinatorial Categorial Grammars (PCCG) where the meanings of words are associated with parameters to be able to distinguish between multiple meanings of the same word. Meaning of many words and the parameters are learned. The puzzles are represented in ASP using an ontology which is applicable to a large set of logic puzzles.


Ontology Alignment at the Instance and Schema Level

arXiv.org Artificial Intelligence

We present PARIS, an approach for the automatic alignment of ontologies. PARIS aligns not only instances, but also relations and classes. Alignments at the instance-level cross-fertilize with alignments at the schema-level. Thereby, our system provides a truly holistic solution to the problem of ontology alignment. The heart of the approach is probabilistic. This allows PARIS to run without any parameter tuning. We demonstrate the efficiency of the algorithm and its precision through extensive experiments. In particular, we obtain a precision of around 90% in experiments with two of the world's largest ontologies.


Representations and Techniques for 3D Object Recognition and Scene Interpretation

Morgan & Claypool Publishers

One of the grand challenges of artificial intelligence is to enable computers to interpret 3D scenes and objects from imagery. This book organizes and introduces major concepts in 3D scene and object representation and inference from still images, with a focus on recent efforts to fuse models of geometry and perspective with statistical machine learning. ISBN 9781608457281, 169 pages.


Feature Reinforcement Learning In Practice

arXiv.org Artificial Intelligence

Following a recent surge in using history-based methods for resolving perceptual aliasing in reinforcement learning, we introduce an algorithm based on the feature reinforcement learning framework called PhiMDP. To create a practical algorithm we devise a stochastic search procedure for a class of context trees based on parallel tempering and a specialized proposal distribution. We provide the first empirical evaluation for PhiMDP. Our proposed algorithm achieves superior performance to the classical U-tree algorithm and the recent active-LZ algorithm, and is competitive with MC-AIXI-CTW that maintains a bayesian mixture over all context trees up to a chosen depth.We are encouraged by our ability to compete with this sophisticated method using an algorithm that simply picks one single model, and uses Q-learning on the corresponding MDP. Our PhiMDP algorithm is much simpler, yet consumes less time and memory. These results show promise for our future work on attacking more complex and larger problems.


Stability Conditions for Online Learnability

arXiv.org Machine Learning

Stability is a general notion that quantifies the sensitivity of a learning algorithm's output to small change in the training dataset (e.g. deletion or replacement of a single training sample). Such conditions have recently been shown to be more powerful to characterize learnability in the general learning setting under i.i.d. samples where uniform convergence is not necessary for learnability, but where stability is both sufficient and necessary for learnability. We here show that similar stability conditions are also sufficient for online learnability, i.e. whether there exists a learning algorithm such that under any sequence of examples (potentially chosen adversarially) produces a sequence of hypotheses that has no regret in the limit with respect to the best hypothesis in hindsight. We introduce online stability, a stability condition related to uniform-leave-one-out stability in the batch setting, that is sufficient for online learnability. In particular we show that popular classes of online learners, namely algorithms that fall in the category of Follow-the-(Regularized)-Leader, Mirror Descent, gradient-based methods and randomized algorithms like Weighted Majority and Hedge, are guaranteed to have no regret if they have such online stability property. We provide examples that suggest the existence of an algorithm with such stability condition might in fact be necessary for online learnability. For the more restricted binary classification setting, we establish that such stability condition is in fact both sufficient and necessary. We also show that for a large class of online learnable problems in the general learning setting, namely those with a notion of sub-exponential covering, no-regret online algorithms that have such stability condition exists.