Goto

Collaborating Authors

 Country


Noise Characterization, Modeling, and Reduction for In Vivo Neural Recording

Neural Information Processing Systems

Studying signal and noise properties of recorded neural data is critical in developing more efficient algorithms to recover the encoded information. Important issues exist in this research including the variant spectrum spans of neural spikes that make it difficult to choose a global optimal bandpass filter. Also, multiple sources produce aggregated noise that deviates from the conventional white Gaussian noise. In this work, the spectrum variability of spikes is addressed, based on which the concept of adaptive bandpass filter that fits the spectrum of individual spikes is proposed. Multiple noise sources have been studied through analytical models as well as empirical measurements. The dominant noise source is identified as neuron noise followed by interface noise of the electrode. This suggests that major efforts to reduce noise from electronics are not well spent. The measured noise from in vivo experiments shows a family of 1/f^{x} (x=1.5\pm 0.5) spectrum that can be reduced using noise shaping techniques. In summary, the methods of adaptive bandpass filtering and noise shaping together result in several dB signal-to-noise ratio (SNR) enhancement.


A Generalized Natural Actor-Critic Algorithm

Neural Information Processing Systems

Policy gradient Reinforcement Learning (RL) algorithms have received substantial attention,seeking stochastic policies that maximize the average (or discounted cumulative) reward. In addition, extensions based on the concept of the Natural Gradient (NG) show promising learning efficiency because these regard metrics for the task. Though there are two candidate metrics, Kakade's Fisher Information Matrix (FIM) for the policy (action) distribution and Morimura's FIM for the stateaction jointdistribution, but all RL algorithms with NG have followed Kakade's approach. In this paper, we describe a generalized Natural Gradient (gNG) that linearly interpolates the two FIMs and propose an efficient implementation for the gNG learning based on a theory of the estimating function, the generalized Natural Actor-Critic(gNAC) algorithm. The gNAC algorithm involves a near optimal auxiliary function to reduce the variance of the gNG estimates. Interestingly, the gNAC can be regarded as a natural extension of the current state-of-the-art NAC algorithm [1], as long as the interpolating parameter is appropriately selected. Numerical experimentsshowed that the proposed gNAC algorithm can estimate gNG efficiently and outperformed the NAC algorithm.


Phase transitions for high-dimensional joint support recovery

Neural Information Processing Systems

We consider the following instance of transfer learning: given a pair of regression problems, suppose that the regression coefficients share a partially common support, parameterized by the overlap fraction $\overlap$ between the two supports. This set-up suggests the use of $1, \infty$-regularized linear regression for recovering the support sets of both regression vectors. Our main contribution is to provide a sharp characterization of the sample complexity of this $1,\infty$ relaxation, exactly pinning down the minimal sample size $n$ required for joint support recovery as a function of the model dimension $\pdim$, support size $\spindex$ and overlap $\overlap \in [0,1]$. For measurement matrices drawn from standard Gaussian ensembles, we prove that the joint $1,\infty$-regularized method undergoes a phase transition characterized by order parameter $\orpar(\numobs, \pdim, \spindex, \overlap) = \numobs{(4 - 3 \overlap) s \log(p-(2-\overlap)s)}$. More precisely, the probability of successfully recovering both supports converges to $1$ for scalings such that $\orpar > 1$, and converges to $0$ to scalings for which $\orpar < 1$. An implication of this threshold is that use of $1, \infty$-regularization leads to gains in sample complexity if the overlap parameter is large enough ($\overlap > 2/3$), but performs worse than a naive approach if $\overlap < 2/3$. We illustrate the close agreement between these theoretical predictions, and the actual behavior in simulations. Thus, our results illustrate both the benefits and dangers associated with block-$1,\infty$ regularization in high-dimensional inference.


Modeling human function learning with Gaussian processes

Neural Information Processing Systems

Accounts of how people learn functional relationships between continuous variables have tended to focus on two possibilities: that people are estimating explicit functions, or that they are simply performing associative learning supported by similarity. We provide a rational analysis of function learning, drawing on work on regression in machine learning and statistics. Using the equivalence of Bayesian linear regression and Gaussian processes, we show that learning explicit rules and using similarity can be seen as two views of one solution to this problem. We use this insight to define a Gaussian process model of human function learning that combines the strengths of both approaches.


A ``Shape Aware'' Model for semi-supervised Learning of Objects and its Context

Neural Information Processing Systems

Integrating semantic and syntactic analysis is essential for document analysis. Using an analogous reasoning, we present an approach that combines bag-of-words and spatial models to perform semantic and syntactic analysis for recognition of an object based on its internal appearance and its context. We argue that while object recognition requires modeling relative spatial locations of image features within the object, a bag-of-word is sufficient for representing context. Learning such a model from weakly labeled data involves labeling of features into two classes: foreground(object) or ''informative'' background(context). labeling. We present a ''shape-aware'' model which utilizes contour information for efficient and accurate labeling of features in the image. Our approach iterates between an MCMC-based labeling and contour based labeling of features to integrate co-occurrence of features and shape similarity.


Kernel Methods for Deep Learning

Neural Information Processing Systems

We introduce a new family of positive-definite kernel functions that mimic the computation in large, multilayer neural nets. These kernel functions can be used in shallow architectures, such as support vector machines (SVMs), or in deep kernel-based architectures that we call multilayer kernel machines (MKMs). We evaluate SVMs and MKMs with these kernel functions on problems designed to illustrate the advantages of deep architectures. On several problems, we obtain better results than previous, leading benchmarks from both SVMs with Gaussian kernels as well as deep belief nets.


Beyond Convexity: Online Submodular Minimization

Neural Information Processing Systems

We consider an online decision problem over a discrete space in which the loss function is submodular. We give algorithms which are computationally efficient and are Hannan-consistent in both the full information and bandit settings.


Generative and Discriminative Learning with Unknown Labeling Bias

Neural Information Processing Systems

We apply robust Bayesian decision theory to improve both generative and discriminative learners under bias in class proportions in labeled training data, when the true class proportions are unknown. For the generative case, we derive an entropy-based weighting that maximizes expected log likelihood under the worst-case true class proportions. For the discriminative case, we derive a multinomial logistic model that minimizes worst-case conditional log loss. We apply our theory to the modeling of species geographic distributions from presence data, an extreme case of label bias since there is no absence data. On a benchmark dataset, we find that entropy-based weighting offers an improvement over constant estimates of class proportions, consistently reducing log loss on unbiased test data.


Semi-supervised Regression using Hessian energy with an application to semi-supervised dimensionality reduction

Neural Information Processing Systems

Semi-supervised regression based on the graph Laplacian suffers from the fact that the solution is biased towards a constant and the lack of extrapolating power. Outgoing from these observations we propose to use the second-order Hessian energy for semi-supervised regression which overcomes both of these problems, in particular, if the data lies on or close to a low-dimensional submanifold in the feature space, the Hessian energy prefers functions which vary ``linearly with respect to the natural parameters in the data. This property makes it also particularly suited for the task of semi-supervised dimensionality reduction where the goal is to find the natural parameters in the data based on a few labeled points. The experimental result suggest that our method is superior to semi-supervised regression using Laplacian regularization and standard supervised methods and is particularly suited for semi-supervised dimensionality reduction.


An Additive Latent Feature Model for Transparent Object Recognition

Neural Information Processing Systems

Existing methods for recognition of object instances and categories based on quantized local features can perform poorly when local features exist on transparent surfaces, such as glass or plastic objects. There are characteristic patterns to the local appearance of transparent objects, but they may not be well captured by distances to individual examples or by a local pattern codebook obtained by vector quantization. The appearance of a transparent patch is determined in part by the refraction of a background pattern through a transparent medium: the energy from the background usually dominates the patch appearance. We model transparent local patch appearance using an additive model of latent factors: background factors due to scene content, and factors which capture a local edge energy distribution characteristic of the refraction. We implement our method using a novel LDA-SIFT formulation which performs LDA prior to any vector quantization step; we discover latent topics which are characteristic of particular transparent patches and quantize the SIFT space into transparent visual words according to the latent topic dimensions. No knowledge of the background scene is required at test time; we show examples recognizing transparent glasses in a domestic environment.