Country
Intelligent Peer Networks for Collaborative Web Search
Menczer, Filippo, Wu, Le-Shin, Akavipat, Ruj
Collaborative query routing is a new paradigm for Web search that treats both established search engines and other publicly available indices as intelligent peer agents in a search network. The approach makes it transparent for anyone to build their own (micro) search engine, by integrating established Web search services, desktop search, and topical crawling techniques. The challenge in this model is that each of these agents must learn about its environmentโ the existence, knowledge, diversity, reliability, and trustworthiness of other agents โ by analyzing the queries received from and results exchanged with these other agents. We present the 6S peer network, which uses machine learning techniques to learn about the changing query environment. We show that simple reinforcement learning algorithms are sufficient to detect and exploit semantic locality in the network, resulting in efficient routing and high-quality search results. A prototype of 6S is available for public use and is intended to assist in the evaluation of different AI techniques employed by the networked agents.
Collective Classification in Network Data
Sen, Prithviraj (University of Maryland) | Namata, Galileo (University of Maryland) | Bilgic, Mustafa (University of Maryland) | Getoor, Lise (University of Maryland) | Galligher, Brian (University of Maryland) | Eliassi-Rad, Tina (University of Maryland)
Many real-world applications produce networked data such as the world-wide web (hypertext documents connected via hyperlinks), social networks (for example, people connected by friendship links), communication networks (computers connected via communication links) and biological networks (for example, protein interaction networks). A recent focus in machine learning research has been to extend traditional machine learning classification techniques to classify nodes in such networks. In this article, we provide a brief introduction to this area of research and how it has progressed during the past decade. We introduce four of the most widely used inference algorithms for classifying networked data and empirically compare them on both synthetic and real-world data.
The Fractal Nature of the Semantic Web
Berners-Lee, Tim (Massachusetts Institute of Technology) | Kagal, Lalana (Massachusetts Institute of Technology)
In the past, many knowledge representation systems failed because they were too monolithic and didnโt scale well, whereas other systems failed to have an impact because they were small and isolated. Along with this trade-off in size, there is also a constant tension between the cost involved in building a larger community that can interoperate through common terms and the cost of the lack of interoperability. The semantic web offers a good compromise between these approaches as it achieves wide-scale communication and interoperability using finite effort and cost. The semantic web is a set of standards for knowledge representation and exchange that is aimed at providing interoperability across applications and organizations. We believe that the gathering success of this technology is not derived from the particular choice of syntax or of logic. Its main contribution is in recognizing and supporting the fractal patterns of scalable web systems. These systems will be composed of many overlapping communities of all sizes, ranging from one individual to the entire population that have internal (but not global) consistency. The information in these systems, including documents and messages, will contain some terms that are understood and accepted globally, some that are understood within certain communities, and some that are understood locally within the system. The amount of interoperability between interacting agents (software or human) will depend on how many communities they have in common and how many ontologies (groups of consistent and related terms) they share. In this article we discuss why fractal patterns are an appropriate model for web systems and how semantic web technologies can be used to design scalable and interoperable systems.
Calendar of Events
RuleML-2008 will be held October 30-31, 2008 in Orlando, Florida, USA. ICAART 2009 will be held January 19-21, 2009, in Porto, Portugal. This page includes all the AAAI sponsored conferences, conferences presented by AAAI Affiliates, and conferences held in cooperation with AAAI. IUI 2009 will be 11-15, 2010, in Atlanta, Georgia USA. held February 8-11, 2009, on Sanibel ICINCO 2009 will be Twenty-First International Joint be held May 19-21, 2009, at the Sundial held July 1-5, 2009, in Milan, Italy. IJCAI-09 will be held July 11-Island, FL. 17, 2009, in Pasadena, California.
Randomized Distributed Configuration Management of Wireless Networks: Multi-layer Markov Random Fields and Near-Optimality
Distributed configuration management is imperative for wireless infrastructureless networks where each node adjusts locally its physical and logical configuration through information exchange with neighbors. Two issues remain open. The first is the optimality. The second is the complexity. We study these issues through modeling, analysis, and randomized distributed algorithms. Modeling defines the optimality. We first derive a global probabilistic model for a network configuration which characterizes jointly the statistical spatial dependence of a physical- and a logical-configuration. We then show that a local model which approximates the global model is a two-layer Markov Random Field or a random bond model. The complexity of the local model is the communication range among nodes. The local model is near-optimal when the approximation error to the global model is within a given error bound. We analyze the trade-off between an approximation error and complexity, and derive sufficient conditions on the near-optimality of the local model. We validate the model, the analysis and the randomized distributed algorithms also through simulation.
Grammar-Based Random Walkers in Semantic Networks
Semantic networks qualify the meaning of an edge relating any two vertices. Determining which vertices are most "central" in a semantic network is difficult because one relationship type may be deemed subjectively more important than another. For this reason, research into semantic network metrics has focused primarily on context-based rankings (i.e. user prescribed contexts). Moreover, many of the current semantic network metrics rank semantic associations (i.e. directed paths between two vertices) and not the vertices themselves. This article presents a framework for calculating semantically meaningful primary eigenvector-based metrics such as eigenvector centrality and PageRank in semantic networks using a modified version of the random walker model of Markov chain analysis. Random walkers, in the context of this article, are constrained by a grammar, where the grammar is a user defined data structure that determines the meaning of the final vertex ranking. The ideas in this article are presented within the context of the Resource Description Framework (RDF) of the Semantic Web initiative.
ECOLANG - Communications Language for Ecological Simulations Network
This document describes the communication language used in one multiagent system environment for ecological simulations, based on EcoDynamo simulator application linked with several intelligent agents and visualisation applications, and extends the initial definition of the language. The agents actions and perceptions are translated into messages exchanged with the simulator application and other agents. The concepts and definitions used follow the BNF notation (Backus et al. 1960) and is inspired in the Coach Unilang language (Reis and Lau 2002).
Tableau-based decision procedures for logics of strategic ability in multi-agent systems
Goranko, Valentin, Shkatov, Dmitry
We develop an incremental tableau-based decision procedures for the Alternating-time temporal logic ATL and some of its variants. While running within the theoretically established complexity upper bound, we claim that our tableau is practically more efficient in the average case than other decision procedures for ATL known so far. Besides, the ease of its adaptation to variants of ATL demonstrates the flexibility of the proposed procedure.
Agent-based Ecological Model Calibration - on the Edge of a New Approach
Pereira, Antonio, Duarte, Pedro, Reis, Luis Paulo
The purpose of this paper is to present a new approach to ecological model calibration -- an agent-based software. This agent works on three stages: 1- It builds a matrix that synthesizes the inter-variable relationships; 2- It analyses the steady-state sensitivity of different variables to different parameters; 3- It runs the model iteratively and measures model lack of fit, adequacy and reliability. Stage 3 continues until some convergence criteria are attained. At each iteration, the agent knows from stages 1 and 2, which parameters are most likely to produce the desired shift on predicted results.
Exploring Large Feature Spaces with Hierarchical Multiple Kernel Learning
For supervised and unsupervised learning, positive definite kernels allow to use large and potentially infinite dimensional feature spaces with a computational cost that only depends on the number of observations. This is usually done through the penalization of predictor functions by Euclidean or Hilbertian norms. In this paper, we explore penalizing by sparsity-inducing norms such as the l1-norm or the block l1-norm. We assume that the kernel decomposes into a large sum of individual basis kernels which can be embedded in a directed acyclic graph; we show that it is then possible to perform kernel selection through a hierarchical multiple kernel learning framework, in polynomial time in the number of selected kernels. This framework is naturally applied to non linear variable selection; our extensive simulations on synthetic datasets and datasets from the UCI repository show that efficiently exploring the large feature space through sparsity-inducing norms leads to state-of-the-art predictive performance.