Goto

Collaborating Authors

 Country


Fast Computation of Posterior Mode in Multi-Level Hierarchical Models

Neural Information Processing Systems

Multilevel hierarchical models provide an attractive framework for incorporating correlations induced in a response variable that is organized hierarchically. Model fitting is challenging, especially for a hierarchy with a large number of nodes. We provide a novel algorithm based on a multi-scale Kalman filter that is both scalable and easy to implement. For Gaussian response, we show our method provides the maximum a-posteriori (MAP) parameter estimates; for non-Gaussian response, parameter estimation is performed through a Laplace approximation. However, the Laplace approximation provides biased parameter estimates that is corrected through a parametric bootstrap procedure. We illustrate through simulation studies and analyses of real world data sets in health care and online advertising.


The Conjoint Effect of Divisive Normalization and Orientation Selectivity on Redundancy Reduction

Neural Information Processing Systems

Bandpass filtering, orientation selectivity, and contrast gain control are prominent features of sensory coding at the level of V1 simple cells. While the effect of bandpass filtering and orientation selectivity can be assessed within a linear model, contrast gain control is an inherently nonlinear computation. Here we employ the class of $L_p$ elliptically contoured distributions to investigate the extent to which the two features---orientation selectivity and contrast gain control---are suited to model the statistics of natural images. Within this framework we find that contrast gain control can play a significant role for the removal of redundancies in natural images. Orientation selectivity, in contrast, has only a very limited potential for redundancy reduction.


Non-parametric Regression Between Manifolds

Neural Information Processing Systems

This learning problem arises frequently in many application areas ranging from signal processing, computer vision, over robotics to computer graphics. We present a new algorithmic scheme for the solution of this general learning problem based on regularized empirical risk minimization. The regularization functional takes into account the geometry of input and output manifold, and we show that it implements a prior which is particularly natural. Moreover, we demonstrate that our algorithm performs well in a difficult surface registration problem.


Stress, noradrenaline, and realistic prediction of mouse behaviour using reinforcement learning

Neural Information Processing Systems

Suppose we train an animal in a conditioning experiment. Can one predict how a given animal, under given experimental conditions, would perform the task? Since various factors such as stress, motivation, genetic background, and previous errors in task performance can influence animal behaviour, this appears to be a very challenging aim. Reinforcement learning (RL) models have been successful inmodeling animal (and human) behaviour, but their success has been limited because of uncertainty as to how to set meta-parameters (such as learning rate, exploitation-exploration balance and future reward discount factor) that strongly influence model performance. We show that a simple RL model whose metaparameters arecontrolled by an artificial neural network, fed with inputs such as stress, affective phenotype, previous task performance, and even neuromodulatory manipulations,can successfully predict mouse behaviour in the "hole-box" - a simple conditioning task. Our results also provide important insights on how stress and anxiety affect animal learning, performance accuracy, and discounting of future rewards, and on how noradrenergic systems can interact with these processes.


Predictive Indexing for Fast Search

Neural Information Processing Systems

We tackle the computational problem of query-conditioned search. Given a machine-learned scoring rule and a query distribution, we build a predictive index by precomputing lists of potential results sorted based on an expected score of the result over future queries. The predictive index datastructure supports an anytime algorithm for approximate retrieval of the top elements. The general approach is applicable to webpage ranking, internet advertisement, and approximate nearest neighbor search. It is particularly effective in settings where standard techniques (e.g., inverted indices) are intractable. We experimentally find substantial improvement over existing methods for internet advertisement and approximate nearest neighbors.


Matrix Completion from Power-Law Distributed Samples

Neural Information Processing Systems

The low-rank matrix completion problem is a fundamental problem with many important applications. Recently, [4],[13] and [5] obtained the first nontrivial theoretical results for the problem assuming that the observed entries are sampled uniformly at random. Unfortunately, most real-world datasets do not satisfy this assumption, but instead exhibit power-law distributed samples. In this paper, we propose a graph theoretic approach to matrix completion that solves the problem for more realistic sampling models. Our method is simpler to analyze than previous methodswith the analysis reducing to computing the threshold for complete cascades in random graphs, a problem of independent interest. By analyzing the graph theoretic problem, we show that our method achieves exact recovery when the observed entries are sampled from the Chung-Lu-Vu model, which can generate power-lawdistributed graphs. We also hypothesize that our algorithm solves the matrix completion problem from an optimal number of entries for the popular preferentialattachment model and provide strong empirical evidence for the claim. Furthermore, our method is easy to implement and is substantially faster than existing methods. We demonstrate the effectiveness of our method on random instanceswhere the low-rank matrix is sampled according to the prevalent random graph models for complex networks and present promising preliminary results on the Netflix challenge dataset.


Non-stationary continuous dynamic Bayesian networks

Neural Information Processing Systems

Dynamic Bayesian networks have been applied widely to reconstruct the structure of regulatory processes from time series data. The standard approach is based on the assumption of a homogeneous Markov chain, which is not valid in many real-world scenarios. Recent research efforts addressing this shortcoming have considered undirected graphs, directed graphs for discretized data, or over-flexible models that lack any information sharing between time series segments. In the present article, we propose a non-stationary dynamic Bayesian network for continuous data, in which parameters are allowed to vary between segments, and in which a common network structure provides essential information sharing across segments. Our model is based on a Bayesian change-point process, and we apply a variant of the allocation sampler of Nobile and Fearnside to infer the number and location of the change-points.


Extended Grassmann Kernels for Subspace-Based Learning

Neural Information Processing Systems

Subspace-based learning problems involve data whose elements are linear subspaces of a vector space. To handle such data structures, Grassmann kernels have been proposed and used previously. In this paper, we analyze the relationship between Grassmann kernels and probabilistic similarity measures. Firstly, we show that the KL distance in the limit yields the Projection kernel on the Grassmann manifold, whereas the Bhattacharyya kernel becomes trivial in the limit and is suboptimal for subspace-based problems. Secondly, based on our analysis of the KL distance, we propose extensions of the Projection kernel which can be extended to the set of affine as well as scaled subspaces. We demonstrate the advantages of these extended kernels for classification and recognition tasks with Support Vector Machines and Kernel Discriminant Analysis using synthetic and real image databases.


Unifying the Sensory and Motor Components of Sensorimotor Adaptation

Neural Information Processing Systems

Adaptation of visually guided reaching movements in novel visuomotor environments (e.g.wearing prism goggles) comprises not only motor adaptation but also substantial sensory adaptation, corresponding to shifts in the perceived spatial location of visual and proprioceptive cues. Previous computational modelsof the sensory component of visuomotor adaptation have assumed that it is driven purely by the discrepancy introduced between visual andproprioceptive estimates of hand position and is independent of any motor component of adaptation. We instead propose a unified model in which sensory and motor adaptation are jointly driven by optimal Bayesian estimation of the sensory and motor contributions to perceived errors. Our model is able to account for patterns of performance errors during visuomotor adaptationas well as the subsequent perceptual aftereffects. This unified model also makes the surprising prediction that force field adaptation willelicit similar perceptual shifts, even though there is never any discrepancy between visual and proprioceptive observations. We confirm this prediction with an experiment.


Shape-Based Object Localization for Descriptive Classification

Neural Information Processing Systems

Discriminative tasks, including object categorization and detection, are central components of high-level computer vision. Sometimes, however, we are interested inmore refined aspects of the object in an image, such as pose or particular regions. In this paper we develop a method (LOOPS) for learning a shape and image feature model that can be trained on a particular object class, and used to outline instances of the class in novel images. Furthermore, while the training data consists of uncorresponded outlines, the resulting LOOPS model contains a set of landmark points that appear consistently across instances, and can be accurately localized in an image. Our model achieves state-of-the-art results in precisely outlining objectsthat exhibit large deformations and articulations in cluttered natural images. These localizations can then be used to address a range of tasks, including descriptive classification, search, and clustering.