Country
An Idiotypic Immune Network as a Short Term Learning Architecture for Mobile Robots
Whitbrook, Amanda, Aickelin, Uwe, Garibaldi, Jonathan M
A combined Short-Term Learning (STL) and Long-Term Learning (LTL) approach to solving mobile robot navigation problems is presented and tested in both real and simulated environments. The LTL consists of rapid simulations that use a Genetic Algorithm to derive diverse sets of behaviours. These sets are then transferred to an idiotypic Artificial Immune System (AIS), which forms the STL phase, and the system is said to be seeded. The combined LTL-STL approach is compared with using STL only, and with using a handdesigned controller. In addition, the STL phase is tested when the idiotypic mechanism is turned off. The results provide substantial evidence that the best option is the seeded idiotypic system, i.e. the architecture that merges LTL with an idiotypic AIS for the STL. They also show that structurally different environments can be used for the two phases without compromising transferability
An Immune Inspired Network Intrusion Detection System Utilising Correlation Context
Tedesco, Gianni, Aickelin, Uwe
Network Intrusion Detection Systems (NIDS) are computer systems which monitor a network with the aim of discerning malicious from benign activity on that network. While a wide range of approaches have met varying levels of success, most IDSs rely on having access to a database of known attack signatures which are written by security experts. Nowadays, in order to solve problems with false positive alerts, correlation algorithms are used to add additional structure to sequences of IDS alerts. However, such techniques are of no help in discovering novel attacks or variations of known attacks, something the human immune system (HIS) is capable of doing in its own specialised domain. This paper presents a novel immune algorithm for application to the IDS problem. The goal is to discover packets containing novel variations of attacks covered by an existing signature base.
An Evolutionary Squeaky Wheel Optimisation Approach to Personnel Scheduling
Aickelin, Uwe, Li, Jingpeng, Burke, Edmund
The quest for robust heuristics that are able to solve more than one problem is ongoing. In this paper, we present, discuss and analyse a technique called Evolutionary Squeaky Wheel Optimisation and apply it to two different personnel scheduling problems. Evolutionary Squeaky Wheel Optimisation improves the original Squeaky Wheel Optimisation's effectiveness and execution speed by incorporating two extra steps (Selection and Mutation) for added evolution. In the Evolutionary Squeaky Wheel Optimisation, a cycle of Analysis-Selection-Mutation-Prioritization-Construction continues until stopping conditions are reached. The aim of the Analysis step is to identify below average solution components by calculating a fitness value for all components. The Selection step then chooses amongst these underperformers and discards some probabilistically based on fitness. The Mutation step further discards a few components at random. Solutions can become incomplete and thus repairs may be required. The repairs are carried out by using the Prioritization to first produce priorities that determine an order by which the following Construction step then schedules the remaining components. Therefore, improvement in the Evolutionary Squeaky Wheel Optimisation is achieved by selective solution disruption mixed with interative improvement and constructive repair. Strong experimental results are reported on two different domains of personnel scheduling: bus and rail driver scheduling and hospital nurse scheduling.
An Immune Inspired Approach to Anomaly Detection
Twycross, Jamie, Aickelin, Uwe
The immune system provides a rich metaphor for computer security: anomaly detection that works in nature should work for machines. However, early artificial immune system approaches for computer security had only limited success. Arguably, this was due to these artificial systems being based on too simplistic a view of the immune system. We present here a second generation artificial immune system for process anomaly detection. It improves on earlier systems by having different artificial cell types that process information. Following detailed information about how to build such second generation systems, we find that communication between cells types is key to performance. Through realistic testing and validation we show that second generation artificial immune systems are capable of anomaly detection beyond generic system policies. The paper concludes with a discussion and outline of the next steps in this exciting area of computer security.
An Agent Based Classification Model
Gu, Feng, Aickelin, Uwe, Greensmith, Julie
The major function of this model is to access the UCI Wisconsin Breast Can- cer data-set[1] and classify the data items into two categories, which are normal and anomalous. This kind of classifi cation can be referred as anomaly detection, which discriminates anomalous behaviour from normal behaviour in computer systems. One popular solution for anomaly detection is Artifi cial Immune Sys- tems (AIS). AIS are adaptive systems inspired by theoretical immunology and observed immune functions, principles and models which are applied to prob- lem solving. The Dendritic Cell Algorithm (DCA)[2] is an AIS algorithm that is developed specifi cally for anomaly detection. It has been successfully applied to intrusion detection in computer security. It is believed that agent-based mod- elling is an ideal approach for implementing AIS, as intelligent agents could be the perfect representations of immune entities in AIS. This model evaluates the feasibility of re-implementing the DCA in an agent-based simulation environ- ment called AnyLogic, where the immune entities in the DCA are represented by intelligent agents. If this model can be successfully implemented, it makes it possible to implement more complicated and adaptive AIS models in the agent-based simulation environment.
A Component Based Heuristic Search Method with Evolutionary Eliminations
Li, Jingpeng, Aickelin, Uwe, Burke, Edmund
Nurse rostering is a complex scheduling problem that affects hospital personnel on a daily basis all over the world. This paper presents a new component-based approach with evolutionary eliminations, for a nurse scheduling problem arising at a major UK hospital. The main idea behind this technique is to decompose a schedule into its components (i.e. the allocated shift pattern of each nurse), and then to implement two evolutionary elimination strategies mimicking natural selection and natural mutation process on these components respectively to iteratively deliver better schedules. The worthiness of all components in the schedule has to be continuously demonstrated in order for them to remain there. This demonstration employs an evaluation function which evaluates how well each component contributes towards the final objective. Two elimination steps are then applied: the first elimination eliminates a number of components that are deemed not worthy to stay in the current schedule; the second elimination may also throw out, with a low level of probability, some worthy components. The eliminated components are replenished with new ones using a set of constructive heuristics using local optimality criteria. Computational results using 52 data instances demonstrate the applicability of the proposed approach in solving real-world problems.
State of the Art Review for Applying Computational Intelligence and Machine Learning Techniques to Portfolio Optimisation
Hurwitz, Evan, Marwala, Tshilidzi
Computational techniques have shown much promise in the field of Finance, owing to their ability to extract sense out of dauntingly complex systems. This paper reviews the most promising of these techniques, from traditional computational intelligence methods to their machine learning siblings, with particular view to their application in optimising the management of a portfolio of financial instruments. The current state of the art is assessed, and prospective further work is assessed and recommended
A Stochastic Model for Collaborative Recommendation
Biau, Gรฉrard, Cadre, Benoit, Rouviรจre, Laurent
Collaborative recommendation is an information-filtering technique that attempts to present information items (movies, music, books, news, images, Web pages, etc.) that are likely of interest to the Internet user. Traditionally, collaborative systems deal with situations with two types of variables, users and items. In its most common form, the problem is framed as trying to estimate ratings for items that have not yet been consumed by a user. Despite wide-ranging literature, little is known about the statistical properties of recommendation systems. In fact, no clear probabilistic model even exists allowing us to precisely describe the mathematical forces driving collaborative filtering. To provide an initial contribution to this, we propose to set out a general sequential stochastic model for collaborative recommendation and analyze its asymptotic performance as the number of users grows. We offer an in-depth analysis of the so-called cosine-type nearest neighbor collaborative method, which is one of the most widely used algorithms in collaborative filtering. We establish consistency of the procedure under mild assumptions on the model. Rates of convergence and examples are also provided.
$L_0$ regularized estimation for nonlinear models that have sparse underlying linear structures
We study the estimation of $\beta$ for the nonlinear model $y = f(X\sp{\top}\beta) + \epsilon$ when $f$ is a nonlinear transformation that is known, $\beta$ has sparse nonzero coordinates, and the number of observations can be much smaller than that of parameters ($n\ll p$). We show that in order to bound the $L_2$ error of the $L_0$ regularized estimator $\hat\beta$, i.e., $\|\hat\beta - \beta\|_2$, it is sufficient to establish two conditions. Based on this, we obtain bounds of the $L_2$ error for (1) $L_0$ regularized maximum likelihood estimation (MLE) for exponential linear models and (2) $L_0$ regularized least square (LS) regression for the more general case where $f$ is analytic. For the analytic case, we rely on power series expansion of $f$, which requires taking into account the singularities of $f$.
Finite element model selection using Particle Swarm Optimization
Mthembu, Linda, Marwala, Tshilidzi, Friswell, Michael I., Adhikari, Sondipon
This paper proposes the application of particle swarm optimization (PSO) to the problem of finite element model (FEM) selection. This problem arises when a choice of the best model for a system has to be made from set of competing models, each developed a priori from engineering judgment. PSO is a population-based stochastic search algorithm inspired by the behaviour of biological entities in nature when they are foraging for resources. Each potentially correct model is represented as a particle that exhibits both individualistic and group behaviour. Each particle moves within the model search space looking for the best solution by updating the parameters values that define it. The most important step in the particle swarm algorithm is the method of representing models which should take into account the number, location and variables of parameters to be updated. One example structural system is used to show the applicability of PSO in finding an optimal FEM. An optimal model is defined as the model that has the least number of updated parameters and has the smallest parameter variable variation from the mean material properties. Two different objective functions are used to compare performance of the PSO algorithm.