Goto

Collaborating Authors

 Country


Speaker Comparison with Inner Product Discriminant Functions

Neural Information Processing Systems

Speaker comparison, the process of finding the speaker similarity between two speech signals, occupies a central role in a variety of applications---speaker verification, clustering, and identification. Speaker comparison can be placed in a geometric framework by casting the problem as a model comparison process. For a given speech signal, feature vectors are produced and used to adapt a Gaussian mixture model (GMM). Speaker comparison can then be viewed as the process of compensating and finding metrics on the space of adapted models. We propose a framework, inner product discriminant functions (IPDFs), which extends many common techniques for speaker comparison: support vector machines, joint factor analysis, and linear scoring. The framework uses inner products between the parameter vectors of GMM models motivated by several statistical methods. Compensation of nuisances is performed via linear transforms on GMM parameter vectors. Using the IPDF framework, we show that many current techniques are simple variations of each other. We demonstrate, on a 2006 NIST speaker recognition evaluation task, new scoring methods using IPDFs which produce excellent error rates and require significantly less computation than current techniques.



Learning with Compressible Priors

Neural Information Processing Systems

We describe probability distributions, dubbed compressible priors, whose independent and identically distributed (iid) realizations result in compressible signals. A signal is compressible when sorted magnitudes of its coefficients exhibit a power-law decay so that the signal can be well-approximated by a sparse signal. Since compressible signals live close to sparse signals, their intrinsic information can be stably embedded via simple non-adaptive linear projections into a much lower dimensional space whose dimension grows logarithmically with the ambient signal dimension. By using order statistics, we show that N-sample iid realizations of generalized Pareto, Student’s t, log-normal, Frechet, and log-logistic distributions are compressible, i.e., they have a constant expected decay rate, which is independent of N. In contrast, we show that generalized Gaussian distribution with shape parameter q is compressible only in restricted cases since the expected decay rate of its N-sample iid realizations decreases with N as 1/[q log(N/q)]. We use compressible priors as a scaffold to build new iterative sparse signal recovery algorithms based on Bayesian inference arguments. We show how tuning of these algorithms explicitly depends on the parameters of the compressible prior of the signal, and how to learn the parameters of the signal’s compressible prior on the fly during recovery.


Particle Filter-based Policy Gradient in POMDPs

Neural Information Processing Systems

Our setting is a Partially Observable Markov Decision Process with continuous state, observation and action spaces. Decisions are based on a Particle Filter for estimating the belief state given past observations. We consider a policy gradient approach for parameterized policy optimization. For that purpose, we investigate sensitivity analysis of the performance measure with respect to the parameters of the policy, focusing on Finite Difference (FD) techniques. We show that the naive FD is subject to variance explosion because of the non-smoothness of the resampling procedure. We propose a more sophisticated FD method which overcomes this problem and establish its consistency.


Semi-supervised Learning using Sparse Eigenfunction Bases

Neural Information Processing Systems

We present a new framework for semi-supervised learning with sparse eigenfunction bases of kernel matrices. It turns out that when the \emph{cluster assumption} holds, that is, when the high density regions are sufficiently separated by low density valleys, each high density area corresponds to a unique representative eigenvector. Linear combination of such eigenvectors (or, more precisely, of their Nystrom extensions) provide good candidates for good classification functions. By first choosing an appropriate basis of these eigenvectors from unlabeled data and then using labeled data with Lasso to select a classifier in the span of these eigenvectors, we obtain a classifier, which has a very sparse representation in this basis. Importantly, the sparsity appears naturally from the cluster assumption. Experimental results on a number of real-world data-sets show that our method is competitive with the state of the art semi-supervised learning algorithms and outperforms the natural base-line algorithm (Lasso in the Kernel PCA basis).


Mortal Multi-Armed Bandits

Neural Information Processing Systems

We formulate and study a new variant of the $k$-armed bandit problem, motivated by e-commerce applications. In our model, arms have (stochastic) lifetime after which they expire. In this setting an algorithm needs to continuously explore new arms, in contrast to the standard $k$-armed bandit model in which arms are available indefinitely and exploration is reduced once an optimal arm is identified with near-certainty. The main motivation for our setting is online-advertising, where ads have limited lifetime due to, for example, the nature of their content and their campaign budget. An algorithm needs to choose among a large collection of ads, more than can be fully explored within the ads' lifetime. We present an optimal algorithm for the state-aware (deterministic reward function) case, and build on this technique to obtain an algorithm for the state-oblivious (stochastic reward function) case. Empirical studies on various reward distributions, including one derived from a real-world ad serving application, show that the proposed algorithms significantly outperform the standard multi-armed bandit approaches applied to these settings.


Positive Semidefinite Metric Learning with Boosting

Neural Information Processing Systems

The learning of appropriate distance metrics is a critical problem in classification. In this work, we propose a boosting-based technique, termed BoostMetric, for learning a Mahalanobis distance metric. One of the primary difficulties in learning such a metric is to ensure that the Mahalanobis matrix remains positive semidefinite. Semidefinite programming is sometimes used to enforce this constraint, but does not scale well. BoostMetric is instead based on a key observation that any positive semidefinite matrix can be decomposed into a linear positive combination of trace-one rank-one matrices. BoostMetric thus uses rank-one positive semidefinite matrices as weak learners within an efficient and scalable boosting-based learning process. The resulting method is easy to implement, does not require tuning, and can accommodate various types of constraints. Experiments on various datasets show that the proposed algorithm compares favorably to those state-of-the-art methods in terms of classification accuracy and running time.


Efficient Moments-based Permutation Tests

Neural Information Processing Systems

In this paper, we develop an efficient moments-based permutation test approach to improve the test--s computational efficiency by approximating the permutation distribution of the test statistic with Pearson distribution series. This approach involves the calculation of the first four moments of the permutation distribution. We propose a novel recursive method to derive these moments theoretically and analytically without any permutation. Experimental results using different test statistics are demonstrated using simulated data and real data. The proposed strategy takes advantage of nonparametric permutation tests and parametric Pearson distribution approximation to achieve both accuracy and efficiency.


A rational model of preference learning and choice prediction by children

Neural Information Processing Systems

Young children demonstrate the ability to make inferences about the preferences of other agents based on their choices. However, there exists no overarching account of what children are doing when they learn about preferences or how they use that knowledge. We use a rational model of preference learning, drawing on ideas from economics and computer science, to explain the behavior of children in several recent experiments. Specifically, we show how a simple econometric model can be extended to capture two- to four-year-olds’ use of statistical information in inferring preferences, and their generalization of these preferences.


Nonrigid Structure from Motion in Trajectory Space

Neural Information Processing Systems

Existing approaches to nonrigid structure from motion assume that the instantaneous 3D shape of a deforming object is a linear combination of basis shapes, which have to be estimated anew for each video sequence. In contrast, we propose that the evolving 3D structure be described by a linear combination of basis trajectories. The principal advantage of this lateral approach is that we do not need to estimate any basis vectors during computation. Instead, we show that generic bases over trajectories, such as the Discrete Cosine Transform (DCT) bases, can be used to effectively describe most real motions. This results in a significant reduction in unknowns, and corresponding stability, in estimation. We report empirical performance, quantitatively using motion capture data and qualitatively on several video sequences exhibiting nonrigid motions including piece-wise rigid motion, articulated motion, partially nonrigid motion (such as a facial expression), and highly nonrigid motion (such as a person dancing).