Country
Synchronization and Control in Intrinsic and Designed Computation: An Information-Theoretic Analysis of Competing Models of Stochastic Computation
Crutchfield, James P., Ellison, Christopher J., James, Ryan G., Mahoney, John R.
We adapt tools from information theory to analyze how an observer comes to synchronize with the hidden states of a finitary, stationary stochastic process. We show that synchronization is determined by both the process's internal organization and by an observer's model of it. We analyze these components using the convergence of state-block and block-state entropies, comparing them to the previously known convergence properties of the Shannon block entropy. Along the way, we introduce a hierarchy of information quantifiers as derivatives and integrals of these entropies, which parallels a similar hierarchy introduced for block entropy. We also draw out the duality between synchronization properties and a process's controllability. The tools lead to a new classification of a process's alternative representations in terms of minimality, synchronizability, and unifilarity.
Stable marriage problems with quantitative preferences
Pini, Maria Silvia, Rossi, Francesca, Venable, Brent, Walsh, Toby
The stable marriage problem is a well-known problem of matching men to women so that no man and woman, who are not married to each other, both prefer each other. Such a problem has a wide variety of practical applications, ranging from matching resident doctors to hospitals, to matching students to schools or more generally to any two-sided market. In the classical stable marriage problem, both men and women express a strict preference order over the members of the other sex, in a qualitative way. Here we consider stable marriage problems with quantitative preferences: each man (resp., woman) provides a score for each woman (resp., man). Such problems are more expressive than the classical stable marriage problems. Moreover, in some real-life situations it is more natural to express scores (to model, for example, profits or costs) rather than a qualitative preference ordering. In this context, we define new notions of stability and optimality, and we provide algorithms to find marriages which are stable and/or optimal according to these notions. While expressivity greatly increases by adopting quantitative preferences, we show that in most cases the desired solutions can be found by adapting existing algorithms for the classical stable marriage problem.
Resource-Optimal Planning For An Autonomous Planetary Vehicle
Della Penna, Giuseppe, Intrigila, Benedetto, Magazzeni, Daniele, Mercorio, Fabio
Autonomous planetary vehicles, also known as rovers, are small autonomous vehicles equipped with a variety of sensors used to perform exploration and experiments on a planet's surface. Rovers work in a partially unknown environment, with narrow energy/time/movement constraints and, typically, small computational resources that limit the complexity of on-line planning and scheduling, thus they represent a great challenge in the field of autonomous vehicles. Indeed, formal models for such vehicles usually involve hybrid systems with nonlinear dynamics, which are difficult to handle by most of the current planning algorithms and tools. Therefore, when offline planning of the vehicle activities is required, for example for rovers that operate without a continuous Earth supervision, such planning is often performed on simplified models that are not completely realistic. In this paper we show how the UPMurphi model checking based planning tool can be used to generate resource-optimal plans to control the engine of an autonomous planetary vehicle, working directly on its hybrid model and taking into account several safety constraints, thus achieving very accurate results.
CLP-based protein fragment assembly
Palu', Alessandro Dal, Dovier, Agostino, Fogolari, Federico, Pontelli, Enrico
The paper investigates a novel approach, based on Constraint Logic Programming (CLP), to predict the 3D conformation of a protein via fragments assembly. The fragments are extracted by a preprocessor-also developed for this work- from a database of known protein structures that clusters and classifies the fragments according to similarity and frequency. The problem of assembling fragments into a complete conformation is mapped to a constraint solving problem and solved using CLP. The constraint-based model uses a medium discretization degree Ca-side chain centroid protein model that offers efficiency and a good approximation for space filling. The approach adapts existing energy models to the protein representation used and applies a large neighboring search strategy. The results shows the feasibility and efficiency of the method. The declarative nature of the solution allows to include future extensions, e.g., different size fragments for better accuracy.
Predicting Suicide Attacks: A Fuzzy Soft Set Approach
This paper models a decision support system to predict the occurance of suicide attack in a given collection of cities. The system comprises two parts. First part analyzes and identifies the factors which affect the prediction. Admitting incomplete information and use of linguistic terms by experts, as two characteristic features of this peculiar prediction problem we exploit the Theory of Fuzzy Soft Sets. Hence the Part 2 of the model is an algorithm vz. FSP which takes the assessment of factors given in Part 1 as its input and produces a possibility profile of cities likely to receive the accident. The algorithm is of O(2^n) complexity. It has been illustrated by an example solved in detail. Simulation results for the algorithm have been presented which give insight into the strengths and weaknesses of FSP. Three different decision making measures have been simulated and compared in our discussion.
An Empirical Study of Borda Manipulation
Davies, Jessica, Katsirelos, George, Narodystka, Nina, Walsh, Toby
We study the problem of coalitional manipulation in elections using the unweighted Borda rule. We provide empirical evidence of the manipulability of Borda elections in the form of two new greedy manipulation algorithms based on intuitions from the bin-packing and multiprocessor scheduling domains. Although we have not been able to show that these algorithms beat existing methods in the worst-case, our empirical evaluation shows that they significantly outperform the existing method and are able to find optimal manipulations in the vast majority of the randomly generated elections that we tested. These empirical results provide further evidence that the Borda rule provides little defense against coalitional manipulation.
A Program-Level Approach to Revising Logic Programs under the Answer Set Semantics
An approach to the revision of logic programs under the answer set semantics is presented. For programs P and Q, the goal is to determine the answer sets that correspond to the revision of P by Q, denoted P * Q. A fundamental principle of classical (AGM) revision, and the one that guides the approach here, is the success postulate. In AGM revision, this stipulates that A is in K * A. By analogy with the success postulate, for programs P and Q, this means that the answer sets of Q will in some sense be contained in those of P * Q. The essential idea is that for P * Q, a three-valued answer set for Q, consisting of positive and negative literals, is first determined. The positive literals constitute a regular answer set, while the negated literals make up a minimal set of naf literals required to produce the answer set from Q. These literals are propagated to the program P, along with those rules of Q that are not decided by these literals. The approach differs from work in update logic programs in two main respects. First, we ensure that the revising logic program has higher priority, and so we satisfy the success postulate; second, for the preference implicit in a revision P * Q, the program Q as a whole takes precedence over P, unlike update logic programs, since answer sets of Q are propagated to P. We show that a core group of the AGM postulates are satisfied, as are the postulates that have been proposed for update logic programs.
Computing Networks: A General Framework to Contrast Neural and Swarm Cognitions
This paper presents the Computing Networks (CNs) framework. CNs are used to generalize neural and swarm architectures. Artificial neural networks, ant colony optimization, particle swarm optimization, and realistic biological models are used as examples of instantiations of CNs. The description of these architectures as CNs allows their comparison. Their differences and similarities allow the identification of properties that enable neural and swarm architectures to perform complex computations and exhibit complex cognitive abilities. In this context, the most relevant characteristics of CNs are the existence multiple dynamical and functional scales. The relationship between multiple dynamical and functional scales with adaptation, cognition (of brains and swarms) and computation is discussed.
Manifold Elastic Net: A Unified Framework for Sparse Dimension Reduction
Zhou, Tianyi, Tao, Dacheng, Wu, Xindong
It is difficult to find the optimal sparse solution of a manifold learning based dimensionality reduction algorithm. The lasso or the elastic net penalized manifold learning based dimensionality reduction is not directly a lasso penalized least square problem and thus the least angle regression (LARS) (Efron et al. \cite{LARS}), one of the most popular algorithms in sparse learning, cannot be applied. Therefore, most current approaches take indirect ways or have strict settings, which can be inconvenient for applications. In this paper, we proposed the manifold elastic net or MEN for short. MEN incorporates the merits of both the manifold learning based dimensionality reduction and the sparse learning based dimensionality reduction. By using a series of equivalent transformations, we show MEN is equivalent to the lasso penalized least square problem and thus LARS is adopted to obtain the optimal sparse solution of MEN. In particular, MEN has the following advantages for subsequent classification: 1) the local geometry of samples is well preserved for low dimensional data representation, 2) both the margin maximization and the classification error minimization are considered for sparse projection calculation, 3) the projection matrix of MEN improves the parsimony in computation, 4) the elastic net penalty reduces the over-fitting problem, and 5) the projection matrix of MEN can be interpreted psychologically and physiologically. Experimental evidence on face recognition over various popular datasets suggests that MEN is superior to top level dimensionality reduction algorithms.
Refinements of Universal Approximation Results for Deep Belief Networks and Restricted Boltzmann Machines
We improve recently published results about resources of Restricted Boltzmann Machines (RBM) and Deep Belief Networks (DBN) required to make them Universal Approximators. We show that any distribution p on the set of binary vectors of length n can be arbitrarily well approximated by an RBM with k-1 hidden units, where k is the minimal number of pairs of binary vectors differing in only one entry such that their union contains the support set of p. In important cases this number is half of the cardinality of the support set of p. We construct a DBN with 2^n/2(n-b), b ~ log(n), hidden layers of width n that is capable of approximating any distribution on {0,1}^n arbitrarily well. This confirms a conjecture presented by Le Roux and Bengio 2010.