Goto

Collaborating Authors

 Country


Automatically Training a Problematic Dialogue Predictor for a Spoken Dialogue System

arXiv.org Artificial Intelligence

Spoken dialogue systems promise efficient and natural access to a large variety of information sources and services from any phone. However, current spoken dialogue systems are deficient in their strategies for preventing, identifying and repairing problems that arise in the conversation. This paper reports results on automatically training a Problematic Dialogue Predictor to predict problematic human-computer dialogues using a corpus of 4692 dialogues collected with the 'How May I Help You' (SM) spoken dialogue system. The Problematic Dialogue Predictor can be immediately applied to the system's decision of whether to transfer the call to a human customer care agent, or be used as a cue to the system's dialogue manager to modify its behavior to repair problems, and even perhaps, to prevent them. We show that a Problematic Dialogue Predictor using automatically-obtainable features from the first two exchanges in the dialogue can predict problematic dialogues 13.2% more accurately than the baseline.


SMOTE: Synthetic Minority Over-sampling Technique

arXiv.org Artificial Intelligence

An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of "normal" examples with only a small percentage of "abnormal" or "interesting" examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This paper shows that a combination of our method of over-sampling the minority (abnormal) class and under-sampling the majority (normal) class can achieve better classifier performance (in ROC space) than only under-sampling the majority class. This paper also shows that a combination of our method of over-sampling the minority class and under-sampling the majority class can achieve better classifier performance (in ROC space) than varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of over-sampling the minority class involves creating synthetic minority class examples. Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.


Accelerating Reinforcement Learning by Composing Solutions of Automatically Identified Subtasks

arXiv.org Artificial Intelligence

This paper discusses a system that accelerates reinforcement learning by using transfer from related tasks. Without such transfer, even if two tasks are very similar at some abstract level, an extensive re-learning effort is required. The system achieves much of its power by transferring parts of previously learned solutions rather than a single complete solution. The system exploits strong features in the multi-dimensional function produced by reinforcement learning in solving a particular task. These features are stable and easy to recognize early in the learning process. They generate a partitioning of the state space and thus the function. The partition is represented as a graph. This is used to index and compose functions stored in a case base to form a close approximation to the solution of the new task. Experiments demonstrate that function composition often produces more than an order of magnitude increase in learning rate compared to a basic reinforcement learning algorithm.


Efficient Solution Algorithms for Factored MDPs

arXiv.org Artificial Intelligence

This paper addresses the problem of planning under uncertainty in large Markov Decision Processes (MDPs). Factored MDPs represent a complex state space using state variables and the transition model using a dynamic Bayesian network. This representation often allows an exponential reduction in the representation size of structured MDPs, but the complexity of exact solution algorithms for such MDPs can grow exponentially in the representation size. In this paper, we present two approximate solution algorithms that exploit structure in factored MDPs. Both use an approximate value function represented as a linear combination of basis functions, where each basis function involves only a small subset of the domain variables. A key contribution of this paper is that it shows how the basic operations of both algorithms can be performed efficiently in closed form, by exploiting both additive and context-specific structure in a factored MDP. A central element of our algorithms is a novel linear program decomposition technique, analogous to variable elimination in Bayesian networks, which reduces an exponentially large LP to a provably equivalent, polynomial-sized one. One algorithm uses approximate linear programming, and the second approximate dynamic programming. Our dynamic programming algorithm is novel in that it uses an approximation based on max-norm, a technique that more directly minimizes the terms that appear in error bounds for approximate MDP algorithms. We provide experimental results on problems with over 10^40 states, demonstrating a promising indication of the scalability of our approach, and compare our algorithm to an existing state-of-the-art approach, showing, in some problems, exponential gains in computation time.


A Knowledge Compilation Map

arXiv.org Artificial Intelligence

We propose a perspective on knowledge compilation which calls for analyzing different compilation approaches according to two key dimensions: the succinctness of the target compilation language, and the class of queries and transformations that the language supports in polytime. We then provide a knowledge compilation map, which analyzes a large number of existing target compilation languages according to their succinctness and their polytime transformations and queries. We argue that such analysis is necessary for placing new compilation approaches within the context of existing ones. We also go beyond classical, flat target compilation languages based on CNF and DNF, and consider a richer, nested class based on directed acyclic graphs (such as OBDDs), which we show to include a relatively large number of target compilation languages.


Improving the Efficiency of Inductive Logic Programming Through the Use of Query Packs

arXiv.org Artificial Intelligence

Inductive logic programming, or relational learning, is a powerful paradigm for machine learning or data mining. However, in order for ILP to become practically useful, the efficiency of ILP systems must improve substantially. To this end, the notion of a query pack is introduced: it structures sets of similar queries. Furthermore, a mechanism is described for executing such query packs. A complexity analysis shows that considerable efficiency improvements can be achieved through the use of this query pack execution mechanism. This claim is supported by empirical results obtained by incorporating support for query pack execution in two existing learning systems.


Fusions of Description Logics and Abstract Description Systems

arXiv.org Artificial Intelligence

Fusions are a simple way of combining logics. For normal modal logics, fusions have been investigated in detail. In particular, it is known that, under certain conditions, decidability transfers from the component logics to their fusion. Though description logics are closely related to modal logics, they are not necessarily normal. In addition, ABox reasoning in description logics is not covered by the results from modal logics. In this paper, we extend the decidability transfer results from normal modal logics to a large class of description logics. To cover different description logics in a uniform way, we introduce abstract description systems, which can be seen as a common generalization of description and modal logics, and show the transfer results in this general setting.


Inferring Strategies for Sentence Ordering in Multidocument News Summarization

arXiv.org Artificial Intelligence

The problem of organizing information for multidocument summarization so that the generated summary is coherent has received relatively little attention. While sentence ordering for single document summarization can be determined from the ordering of sentences in the input article, this is not the case for multidocument summarization where summary sentences may be drawn from different input articles. In this paper, we propose a methodology for studying the properties of ordering information in the news genre and describe experiments done on a corpus of multiple acceptable orderings we developed for the task. Based on these experiments, we implemented a strategy for ordering information that combines constraints from chronological order of events and topical relatedness. Evaluation of our augmented algorithm shows a significant improvement of the ordering over two baseline strategies.


Exploiting Correlation in Sparse Signal Recovery Problems: Multiple Measurement Vectors, Block Sparsity, and Time-Varying Sparsity

arXiv.org Machine Learning

A trend in compressed sensing (CS) is to exploit structure for improved reconstruction performance. In the basic CS model, exploiting the clustering structure among nonzero elements in the solution vector has drawn much attention, and many algorithms have been proposed. However, few algorithms explicitly consider correlation within a cluster. Meanwhile, in the multiple measurement vector (MMV) model correlation among multiple solution vectors is largely ignored. Although several recently developed algorithms consider the exploitation of the correlation, these algorithms need to know a priori the correlation structure, thus limiting their effectiveness in practical problems. Recently, we developed a sparse Bayesian learning (SBL) algorithm, namely T-SBL, and its variants, which adaptively learn the correlation structure and exploit such correlation information to significantly improve reconstruction performance. Here we establish their connections to other popular algorithms, such as the group Lasso, iterative reweighted $\ell_1$ and $\ell_2$ algorithms, and algorithms for time-varying sparsity. We also provide strategies to improve these existing algorithms.


Towards OWL-based Knowledge Representation in Petrology

arXiv.org Artificial Intelligence

This paper presents our work on development of OWL-driven systems for formal representation and reasoning about terminological knowledge and facts in petrology. The long-term aim of our project is to provide solid foundations for a large-scale integration of various kinds of knowledge, including basic terms, rock classification algorithms, findings and reports. We describe three steps we have taken towards that goal here. First, we develop a semi-automated procedure for transforming a database of igneous rock samples to texts in a controlled natural language (CNL), and then a collection of OWL ontologies. Second, we create an OWL ontology of important petrology terms currently described in natural language thesauri. We describe a prototype of a tool for collecting definitions from domain experts. Third, we present an approach to formalization of current industrial standards for classification of rock samples, which requires linear equations in OWL 2. In conclusion, we discuss a range of opportunities arising from the use of semantic technologies in petrology and outline the future work in this area.