Country
Optimal Schedules for Parallelizing Anytime Algorithms: The Case of Shared Resources
Finkelstein, L., Markovitch, S., Rivlin, E.
The performance of anytime algorithms can be improved by simultaneously solving several instances of algorithm-problem pairs. These pairs may include different instances of a problem (such as starting from a different initial state), different algorithms (if several alternatives exist), or several runs of the same algorithm (for non-deterministic algorithms). In this paper we present a methodology for designing an optimal scheduling policy based on the statistical characteristics of the algorithms involved. We formally analyze the case where the processes share resources (a single-processor model), and provide an algorithm for optimal scheduling. We analyze, theoretically and empirically, the behavior of our scheduling algorithm for various distribution types. Finally, we present empirical results of applying our scheduling algorithm to the Latin Square problem.
AltAltp: Online Parallelization of Plans with Heuristic State Search
Despite their near dominance, heuristic state search planners still lag behind disjunctive planners in the generation of parallel plans in classical planning. The reason is that directly searching for parallel solutions in state space planners would require the planners to branch on all possible subsets of parallel actions, thus increasing the branching factor exponentially. We present a variant of our heuristic state search planner AltAlt, called AltAltp which generates parallel plans by using greedy online parallelization of partial plans. The greedy approach is significantly informed by the use of novel distance heuristics that AltAltp derives from a graphplan-style planning graph for the problem. While this approach is not guaranteed to provide optimal parallel plans, empirical results show that AltAltp is capable of generating good quality parallel plans at a fraction of the cost incurred by the disjunctive planners.
TALplanner in IPC-2002: Extensions and Control Rules
Kvarnstrรถm, J., Magnusson, M.
TALplanner is a forward-chaining planner that relies on domain knowledge in the shape of temporal logic formulas in order to prune irrelevant parts of the search space. TALplanner recently participated in the third International Planning Competition, which had a clear emphasis on increasing the complexity of the problem domains being used as benchmark tests and the expressivity required to represent these domains in a planning system. Like many other planners, TALplanner had support for some but not all aspects of this increase in expressivity, and a number of changes to the planner were required. After a short introduction to TALplanner, this article describes some of the changes that were made before and during the competition. We also describe the process of introducing suitable domain knowledge for several of the competition domains.
A New General Method to Generate Random Modal Formulae for Testing Decision Procedures
Patel-Schneider, P. F., Sebastiani, R.
The recent emergence of heavily-optimized modal decision procedures has highlighted the key role of empirical testing in this domain. Unfortunately, the introduction of extensive empirical tests for modal logics is recent, and so far none of the proposed test generators is very satisfactory. To cope with this fact, we present a new random generation method that provides benefits over previous methods for generating empirical tests. It fixes and much generalizes one of the best-known methods, the random CNF_[]m test, allowing for generating a much wider variety of problems, covering in principle the whole input space. Our new method produces much more suitable test sets for the current generation of modal decision procedures. We analyze the features of the new method by means of an extensive collection of empirical tests.
Planning Through Stochastic Local Search and Temporal Action Graphs in LPG
Gerevini, A., Saetti, A., Serina, I.
We present some techniques for planning in domains specified with the recent standard language PDDL2.1, supporting 'durative actions' and numerical quantities. These techniques are implemented in LPG, a domain-independent planner that took part in the 3rd International Planning Competition (IPC). LPG is an incremental, any time system producing multi-criteria quality plans. The core of the system is based on a stochastic local search method and on a graph-based representation called 'Temporal Action Graphs' (TA-graphs). This paper focuses on temporal planning, introducing TA-graphs and proposing some techniques to guide the search in LPG using this representation. The experimental results of the 3rd IPC, as well as further results presented in this paper, show that our techniques can be very effective. Often LPG outperforms all other fully-automated planners of the 3rd IPC in terms of speed to derive a solution, or quality of the solutions that can be produced.
The Metric-FF Planning System: Translating "Ignoring Delete Lists" to Numeric State Variables
Planning with numeric state variables has been a challenge for many years, and was a part of the 3rd International Planning Competition (IPC-3). Currently one of the most popular and successful algorithmic techniques in STRIPS planning is to guide search by a heuristic function, where the heuristic is based on relaxing the planning task by ignoring the delete lists of the available actions. We present a natural extension of ``ignoring delete lists'' to numeric state variables, preserving the relevant theoretical properties of the STRIPS relaxation under the condition that the numeric task at hand is ``monotonic''. We then identify a subset of the numeric IPC-3 competition language, ``linear tasks'', where monotonicity can be achieved by pre-processing. Based on that, we extend the algorithms used in the heuristic planning system FF to linear tasks. The resulting system Metric-FF is, according to the IPC-3 results which we discuss, one of the two currently most efficient numeric planners.
Temporal Decision Trees: Model-based Diagnosis of Dynamic Systems On-Board
Console, L., Picardi, C., Duprรจ, D. Theseider
The automatic generation of decision trees based on off-line reasoning on models of a domain is a reasonable compromise between the advantages of using a model-based approach in technical domains and the constraints imposed by embedded applications. In this paper we extend the approach to deal with temporal information. We introduce a notion of temporal decision tree, which is designed to make use of relevant information as long as it is acquired, and we present an algorithm for compiling such trees from a model-based reasoning system.
SAPA: A Multi-objective Metric Temporal Planner
SAPA is a domain-independent heuristic forward chaining planner that can handle durative actions, metric resource constraints, and deadline goals. It is designed to be capable of handling the multi-objective nature of metric temporal planning. Our technical contributions include (i) planning-graph based methods for deriving heuristics that are sensitive to both cost and makespan (ii) techniques for adjusting the heuristic estimates to take action interactions and metric resource limitations into account and (iii) a linear time greedy post-processing technique to improve execution flexibility of the solution plans. An implementation of SAPA using many of the techniques presented in this paper was one of the best domain independent planners for domains with metric and temporal constraints in the third International Planning Competition, held at AIPS-02. We describe the technical details of extracting the heuristics and present an empirical evaluation of the current implementation of SAPA.
Answer Set Planning Under Action Costs
Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.
Recently, planning based on answer set programming has been proposed as an approach towards realizing declarative planning systems. In this paper, we present the language Kc, which extends the declarative planning language K by action costs. Kc provides the notion of admissible and optimal plans, which are plans whose overall action costs are within a given limit resp. minimum over all plans (i.e., cheapest plans). As we demonstrate, this novel language allows for expressing some nontrivial planning tasks in a declarative way. Furthermore, it can be utilized for representing planning problems under other optimality criteria, such as computing ``shortest'' plans (with the least number of steps), and refinement combinations of cheapest and fastest plans. We study complexity aspects of the language Kc and provide a transformation to logic programs, such that planning problems are solved via answer set programming. Furthermore, we report experimental results on selected problems. Our experience is encouraging that answer set planning may be a valuable approach to expressive planning systems in which intricate planning problems can be naturally specified and solved.
Exploiting Reputation in Distributed Virtual Environments
Quattrociocchi, Walter, Conte, Rosaria
The cognitive research on reputation has shown several interesting properties that can improve both the quality of services and the security in distributed electronic environments. In this paper, the impact of reputation on decision-making under scarcity of information will be shown. First, a cognitive theory of reputation will be presented, then a selection of simulation experimental results from different studies will be discussed. Such results concern the benefits of reputation when agents need to find out good sellers in a virtual market-place under uncertainty and informational cheating.