Goto

Collaborating Authors

 Country


dynPARTIX - A Dynamic Programming Reasoner for Abstract Argumentation

arXiv.org Artificial Intelligence

The aim of this paper is to announce the release of a novel system for abstract argumentation which is based on decomposition and dynamic programming. We provide first experimental evaluations to show the feasibility of this approach.


Making Use of Advances in Answer-Set Programming for Abstract Argumentation Systems

arXiv.org Artificial Intelligence

Dung's famous abstract argumentation frameworks represent the core formalism for many problems and applications in the field of argumentation which significantly evolved within the last decade. Recent work in the field has thus focused on implementations for these frameworks, whereby one of the main approaches is to use Answer-Set Programming (ASP). While some of the argumentation semantics can be nicely expressed within the ASP language, others required rather cumbersome encoding techniques. Recent advances in ASP systems, in particular, the metasp optimization frontend for the ASP-package gringo/claspD provides direct commands to filter answer sets satisfying certain subset-minimality (or -maximality) constraints. This allows for much simpler encodings compared to the ones in standard ASP language. In this paper, we experimentally compare the original encodings (for the argumentation semantics based on preferred, semi-stable, and respectively, stage extensions) with new metasp encodings. Moreover, we provide novel encodings for the recently introduced resolution-based grounded semantics. Our experimental results indicate that the metasp approach works well in those cases where the complexity of the encoded problem is adequately mirrored within the metasp approach.


Using Supervised Learning to Improve Monte Carlo Integral Estimation

arXiv.org Machine Learning

Monte Carlo (MC) techniques are often used to estimate integrals of a multivariate function using randomly generated samples of the function. In light of the increasing interest in uncertainty quantification and robust design applications in aerospace engineering, the calculation of expected values of such functions (e.g. performance measures) becomes important. However, MC techniques often suffer from high variance and slow convergence as the number of samples increases. In this paper we present Stacked Monte Carlo (StackMC), a new method for post-processing an existing set of MC samples to improve the associated integral estimate. StackMC is based on the supervised learning techniques of fitting functions and cross validation. It should reduce the variance of any type of Monte Carlo integral estimate (simple sampling, importance sampling, quasi-Monte Carlo, MCMC, etc.) without adding bias. We report on an extensive set of experiments confirming that the StackMC estimate of an integral is more accurate than both the associated unprocessed Monte Carlo estimate and an estimate based on a functional fit to the MC samples. These experiments run over a wide variety of integration spaces, numbers of sample points, dimensions, and fitting functions. In particular, we apply StackMC in estimating the expected value of the fuel burn metric of future commercial aircraft and in estimating sonic boom loudness measures. We compare the efficiency of StackMC with that of more standard methods and show that for negligible additional computational cost significant increases in accuracy are gained.


Submodular Optimization for Efficient Semi-supervised Support Vector Machines

arXiv.org Artificial Intelligence

In this work we present a quadratic programming approximation of the Semi-Supervised Support Vector Machine (S3VM) problem, namely approximate QP-S3VM, that can be efficiently solved using off the shelf optimization packages. We prove that this approximate formulation establishes a relation between the low density separation and the graph-based models of semi-supervised learning (SSL) which is important to develop a unifying framework for semi-supervised learning methods. Furthermore, we propose the novel idea of representing SSL problems as submodular set functions and use efficient submodular optimization algorithms to solve them. Using this new idea we develop a representation of the approximate QP-S3VM as a maximization of a submodular set function which makes it possible to optimize using efficient greedy algorithms. We demonstrate that the proposed methods are accurate and provide significant improvement in time complexity over the state of the art in the literature.


Detection and emergence

arXiv.org Artificial Intelligence

Two different conceptions of emergence are reconciled as two instances of the phenomenon of detection. In the process of comparing these two conceptions, we find that the notions of complexity and detection allow us to form a unified definition of emergence that clearly delineates the role of the observer.


Promoting scientific thinking with robots

arXiv.org Artificial Intelligence

This article describes an exemplary robot exercise which was conducted in a class for mechatronics students. The goal of this exercise was to engage students in scientific thinking and reasoning, activities which do not always play an important role in their curriculum. The robotic platform presented here is simple in its construction and is customizable to the needs of the teacher. Therefore, it can be used for exercises in many different fields of science, not necessarily related to robotics. Here we present a situation where the robot is used like an alien creature from which we want to understand its behavior, resembling an ethological research activity. This robot exercise is suited for a wide range of courses, from general introduction to science, to hardware oriented lectures.


A Dynamical Systems Approach for Static Evaluation in Go

arXiv.org Artificial Intelligence

In the paper arguments are given why the concept of static evaluation has the potential to be a useful extension to Monte Carlo tree search. A new concept of modeling static evaluation through a dynamical system is introduced and strengths and weaknesses are discussed. The general suitability of this approach is demonstrated.


Biomimetic use of genetic algorithms

arXiv.org Artificial Intelligence

Genetic algorithms are considered as an original way to solve problems, probably because of their generality and of their "blind" nature. But GAs are also unusual since the features of many implementations (among all that could be thought of) are principally led by the biological metaphor, while efficiency measurements intervene only afterwards. We propose here to examine the relevance of these biomimetic aspects, by pointing out some fundamental similarities and divergences between GAs and the genome of living beings shaped by natural selection. One of the main differences comes from the fact that GAs rely principally on the so-called implicit parallelism, while giving to the mutation/selection mechanism the second role. Such differences could suggest new ways of employing GAs on complex problems, using complex codings and starting from nearly homogeneous populations.


Solving puzzles described in English by automated translation to answer set programming and learning how to do that translation

arXiv.org Artificial Intelligence

We present a system capable of automatically solving combinatorial logic puzzles given in (simplified) English. It involves translating the English descriptions of the puzzles into answer set programming(ASP) and using ASP solvers to provide solutions of the puzzles. To translate the descriptions, we use a lambda-calculus based approach using Probabilistic Combinatorial Categorial Grammars (PCCG) where the meanings of words are associated with parameters to be able to distinguish between multiple meanings of the same word. Meaning of many words and the parameters are learned. The puzzles are represented in ASP using an ontology which is applicable to a large set of logic puzzles.


Ontology Alignment at the Instance and Schema Level

arXiv.org Artificial Intelligence

We present PARIS, an approach for the automatic alignment of ontologies. PARIS aligns not only instances, but also relations and classes. Alignments at the instance-level cross-fertilize with alignments at the schema-level. Thereby, our system provides a truly holistic solution to the problem of ontology alignment. The heart of the approach is probabilistic. This allows PARIS to run without any parameter tuning. We demonstrate the efficiency of the algorithm and its precision through extensive experiments. In particular, we obtain a precision of around 90% in experiments with two of the world's largest ontologies.