Country
PAC-Bayesian Policy Evaluation for Reinforcement Learning
Fard, Mahdi MIlani, Pineau, Joelle, Szepesvari, Csaba
Bayesian priors offer a compact yet general means of incorporating domain knowledge into many learning tasks. The correctness of the Bayesian analysis and inference, however, largely depends on accuracy and correctness of these priors. PAC-Bayesian methods overcome this problem by providing bounds that hold regardless of the correctness of the prior distribution. This paper introduces the first PAC-Bayesian bound for the batch reinforcement learning problem with function approximation. We show how this bound can be used to perform model-selection in a transfer learning scenario. Our empirical results confirm that PAC-Bayesian policy evaluation is able to leverage prior distributions when they are informative and, unlike standard Bayesian RL approaches, ignore them when they are misleading.
Nonparametric Divergence Estimation with Applications to Machine Learning on Distributions
Poczos, Barnabas, Xiong, Liang, Schneider, Jeff
Low-dimensional embedding, manifold learning, clustering, classification, and anomaly detection are among the most important problems in machine learning. The existing methods usually consider the case when each instance has a fixed, finite-dimensional feature representation. Here we consider a different setting. We assume that each instance corresponds to a continuous probability distribution. These distributions are unknown, but we are given some i.i.d. samples from each distribution. Our goal is to estimate the distances between these distributions and use these distances to perform low-dimensional embedding, clustering/classification, or anomaly detection for the distributions. We present estimation algorithms, describe how to apply them for machine learning tasks on distributions, and show empirical results on synthetic data, real word images, and astronomical data sets.
Efficient Probabilistic Inference with Partial Ranking Queries
Huang, Jonathan, Kapoor, Ashish, Guestrin, Carlos E.
Distributions over rankings are used to model data in various settings such as preference analysis and political elections. The factorial size of the space of rankings, however, typically forces one to make structural assumptions, such as smoothness, sparsity, or probabilistic independence about these underlying distributions. We approach the modeling problem from the computational principle that one should make structural assumptions which allow for efficient calculation of typical probabilistic queries. For ranking models, "typical" queries predominantly take the form of partial ranking queries (e.g., given a user's top-k favorite movies, what are his preferences over remaining movies?). In this paper, we argue that riffled independence factorizations proposed in recent literature [7, 8] are a natural structural assumption for ranking distributions, allowing for particularly efficient processing of partial ranking queries.
Robust learning Bayesian networks for prior belief
Recent reports have described that learning Bayesian networks are highly sensitive to the chosen equivalent sample size (ESS) in the Bayesian Dirichlet equivalence uniform (BDeu). This sensitivity often engenders some unstable or undesirable results. This paper describes some asymptotic analyses of BDeu to explain the reasons for the sensitivity and its effects. Furthermore, this paper presents a proposal for a robust learning score for ESS by eliminating the sensitive factors from the approximation of log-BDeu.
Smoothing Multivariate Performance Measures
Zhang, Xinhua, Saha, Ankan, Vishwanatan, S. V. N.
A Support Vector Method for multivariate performance measures was recently introduced by Joachims (2005). The underlying optimization problem is currently solved using cutting plane methods such as SVM-Perf and BMRM. One can show that these algorithms converge to an eta accurate solution in O(1/Lambda*e) iterations, where lambda is the trade-off parameter between the regularizer and the loss function. We present a smoothing strategy for multivariate performance scores, in particular precision/recall break-even point and ROCArea. When combined with Nesterov's accelerated gradient algorithm our smoothing strategy yields an optimization algorithm which converges to an eta accurate solution in O(min{1/e,1/sqrt(lambda*e)}) iterations. Furthermore, the cost per iteration of our scheme is the same as that of SVM-Perf and BMRM. Empirical evaluation on a number of publicly available datasets shows that our method converges significantly faster than cutting plane methods without sacrificing generalization ability.
Sparse Topical Coding
We present sparse topical coding (STC), a non-probabilistic formulation of topic models for discovering latent representations of large collections of data. Unlike probabilistic topic models, STC relaxes the normalization constraint of admixture proportions and the constraint of defining a normalized likelihood function. Such relaxations make STC amenable to: 1) directly control the sparsity of inferred representations by using sparsity-inducing regularizers; 2) be seamlessly integrated with a convex error function (e.g., SVM hinge loss) for supervised learning; and 3) be efficiently learned with a simply structured coordinate descent algorithm. Our results demonstrate the advantages of STC and supervised MedSTC on identifying topical meanings of words and improving classification accuracy and time efficiency.
Lipschitz Parametrization of Probabilistic Graphical Models
We show that the log-likelihood of several probabilistic graphical models is Lipschitz continuous with respect to the lp-norm of the parameters. We discuss several implications of Lipschitz parametrization. We present an upper bound of the Kullback-Leibler divergence that allows understanding methods that penalize the lp-norm of differences of parameters as the minimization of that upper bound. The expected log-likelihood is lower bounded by the negative lp-norm, which allows understanding the generalization ability of probabilistic models. The exponential of the negative lp-norm is involved in the lower bound of the Bayes error rate, which shows that it is reasonable to use parameters as features in algorithms that rely on metric spaces (e.g. classification, dimensionality reduction, clustering). Our results do not rely on specific algorithms for learning the structure or parameters. We show preliminary results for activity recognition and temporal segmentation.
Variational Algorithms for Marginal MAP
Liu, Qiang, Ihler, Alexander T.
Marginal MAP problems are notoriously difficult tasks for graphical models. We derive a general variational framework for solving marginal MAP problems, in which we apply analogues of the Bethe, tree-reweighted, and mean field approximations. We then derive a "mixed" message passing algorithm and a convergent alternative using CCCP to solve the BP-type approximations. Theoretically, we give conditions under which the decoded solution is a global or local optimum, and obtain novel upper bounds on solutions. Experimentally we demonstrate that our algorithms outperform related approaches. We also show that EM and variational EM comprise a special case of our framework.
Partial Order MCMC for Structure Discovery in Bayesian Networks
Niinimaki, Teppo, Parviainen, Pekka, Koivisto, Mikko
We present a new Markov chain Monte Carlo method for estimating posterior probabilities of structural features in Bayesian networks. The method draws samples from the posterior distribution of partial orders on the nodes; for each sampled partial order, the conditional probabilities of interest are computed exactly. We give both analytical and empirical results that suggest the superiority of the new method compared to previous methods, which sample either directed acyclic graphs or linear orders on the nodes.
Identifiability of Causal Graphs using Functional Models
Peters, Jonas, Mooij, Joris, Janzing, Dominik, Schoelkopf, Bernhard
This work addresses the following question: Under what assumptions on the data generating process can one infer the causal graph from the joint distribution? The approach taken by conditional independence-based causal discovery methods is based on two assumptions: the Markov condition and faithfulness. It has been shown that under these assumptions the causal graph can be identified up to Markov equivalence (some arrows remain undirected) using methods like the PC algorithm. In this work we propose an alternative by defining Identifiable Functional Model Classes (IFMOCs). As our main theorem we prove that if the data generating process belongs to an IFMOC, one can identify the complete causal graph. To the best of our knowledge this is the first identifiability result of this kind that is not limited to linear functional relationships. We discuss how the IFMOC assumption and the Markov and faithfulness assumptions relate to each other and explain why we believe that the IFMOC assumption can be tested more easily on given data. We further provide a practical algorithm that recovers the causal graph from finitely many data; experiments on simulated data support the theoretical findings.