Goto

Collaborating Authors

 Country


Finding Density Functionals with Machine Learning

arXiv.org Machine Learning

Machine learning is used to approximate density functionals. For the model problem of the kinetic energy of non-interacting fermions in 1d, mean absolute errors below 1 kcal/mol on test densities similar to the training set are reached with fewer than 100 training densities. A predictor identifies if a test density is within the interpolation region. Via principal component analysis, a projected functional derivative finds highly accurate self-consistent densities. Challenges for application of our method to real electronic structure problems are discussed.


Enhancing Support for Knowledge Works: A relatively unexplored vista of computing research

arXiv.org Artificial Intelligence

Let us envision a new class of IT systems, the "Support Systems for Knowledge Works" or SSKW. An SSKW can be defined as a system built for providing comprehensive support to human knowledge-workers while performing instances of complex knowledge-works of a particular type within a particular domain of professional activities To get an idea what an SSKW-enabled work environment can be like, let us look into a hypothetical scenario that depicts the interaction between a physician and a patient-care SSKW during the activity of diagnosing a patient.


Alignment Based Kernel Learning with a Continuous Set of Base Kernels

arXiv.org Machine Learning

The success of kernel-based learning methods depend on the choice of kernel. Recently, kernel learning methods have been proposed that use data to select the most appropriate kernel, usually by combining a set of base kernels. We introduce a new algorithm for kernel learning that combines a {\em continuous set of base kernels}, without the common step of discretizing the space of base kernels. We demonstrate that our new method achieves state-of-the-art performance across a variety of real-world datasets. Furthermore, we explicitly demonstrate the importance of combining the right dictionary of kernels, which is problematic for methods based on a finite set of base kernels chosen a priori. Our method is not the first approach to work with continuously parameterized kernels. However, we show that our method requires substantially less computation than previous such approaches, and so is more amenable to multiple dimensional parameterizations of base kernels, which we demonstrate.


Sparse Transfer Learning for Interactive Video Search Reranking

arXiv.org Machine Learning

Visual reranking is effective to improve the performance of the text-based video search. However, existing reranking algorithms can only achieve limited improvement because of the well-known semantic gap between low level visual features and high level semantic concepts. In this paper, we adopt interactive video search reranking to bridge the semantic gap by introducing user's labeling effort. We propose a novel dimension reduction tool, termed sparse transfer learning (STL), to effectively and efficiently encode user's labeling information. STL is particularly designed for interactive video search reranking. Technically, it a) considers the pair-wise discriminative information to maximally separate labeled query relevant samples from labeled query irrelevant ones, b) achieves a sparse representation for the subspace to encodes user's intention by applying the elastic net penalty, and c) propagates user's labeling information from labeled samples to unlabeled samples by using the data distribution knowledge. We conducted extensive experiments on the TRECVID 2005, 2006 and 2007 benchmark datasets and compared STL with popular dimension reduction algorithms. We report superior performance by using the proposed STL based interactive video search reranking.


Using Artificial Bee Colony Algorithm for MLP Training on Earthquake Time Series Data Prediction

arXiv.org Artificial Intelligence

Nowadays, computer scientists have shown the interest in the study of social insect's behaviour in neural networks area for solving different combinatorial and statistical problems. Chief among these is the Artificial Bee Colony (ABC) algorithm. This paper investigates the use of ABC algorithm that simulates the intelligent foraging behaviour of a honey bee swarm. Multilayer Perceptron (MLP) trained with the standard back propagation algorithm normally utilises computationally intensive training algorithms. One of the crucial problems with the backpropagation (BP) algorithm is that it can sometimes yield the networks with suboptimal weights because of the presence of many local optima in the solution space. To overcome ABC algorithm used in this work to train MLP learning the complex behaviour of earthquake time series data trained by BP, the performance of MLP-ABC is benchmarked against MLP training with the standard BP. The experimental result shows that MLP-ABC performance is better than MLP-BP for time series data.


Computable de Finetti measures

arXiv.org Machine Learning

We prove a computable version of de Finetti's theorem on exchangeable sequences of real random variables. As a consequence, exchangeable stochastic processes expressed in probabilistic functional programming languages can be automatically rewritten as procedures that do not modify non-local state. Along the way, we prove that a distribution on the unit interval is computable if and only if its moments are uniformly computable.


Additive Gaussian Processes

arXiv.org Machine Learning

We introduce a Gaussian process model of functions which are additive. An additive function is one which decomposes into a sum of low-dimensional functions, each depending on only a subset of the input variables. Additive GPs generalize both Generalized Additive Models, and the standard GP models which use squared-exponential kernels. Hyperparameter learning in this model can be seen as Bayesian Hierarchical Kernel Learning (HKL). We introduce an expressive but tractable parameterization of the kernel function, which allows efficient evaluation of all input interaction terms, whose number is exponential in the input dimension. The additional structure discoverable by this model results in increased interpretability, as well as state-of-the-art predictive power in regression tasks.


Scenario trees and policy selection for multistage stochastic programming using machine learning

arXiv.org Machine Learning

We propose a hybrid algorithmic strategy for complex stochastic optimization problems, which combines the use of scenario trees from multistage stochastic programming with machine learning techniques for learning a policy in the form of a statistical model, in the context of constrained vector-valued decisions. Such a policy allows one to run out-of-sample simulations over a large number of independent scenarios, and obtain a signal on the quality of the approximation scheme used to solve the multistage stochastic program. We propose to apply this fast simulation technique to choose the best tree from a set of scenario trees. A solution scheme is introduced, where several scenario trees with random branching structure are solved in parallel, and where the tree from which the best policy for the true problem could be learned is ultimately retained. Numerical tests show that excellent trade-offs can be achieved between run times and solution quality.


A New Algorithm for Exploratory Projection Pursuit

arXiv.org Machine Learning

In this paper, we propose a new algorithm for exploratory projection pursuit. The basis of the algorithm is the insight that previous approaches used fairly narrow definitions of interestingness / non interestingness. We argue that allowing these definitions to depend on the problem / data at hand is a more natural approach in an exploratory technique. This also allows our technique much greater applicability than the approaches extant in the literature. Complementing this insight, we propose a class of projection indices based on the spatial distribution function that can make use of such information. Finally, with the help of real datasets, we demonstrate how a range of multivariate exploratory tasks can be addressed with our algorithm. The examples further demonstrate that the proposed indices are quite capable of focussing on the interesting structure in the data, even when this structure is otherwise hard to detect or arises from very subtle patterns.


Performance Evaluation of Road Traffic Control Using a Fuzzy Cellular Model

arXiv.org Artificial Intelligence

In this paper a method is proposed for performance evaluation of road traffic control systems. The method is designed to be implemented in an on-line simulation environment, which enables optimisation of adaptive traffic control strategies. Performance measures are computed using a fuzzy cellular traffic model, formulated as a hybrid system combining cellular automata and fuzzy calculus. Experimental results show that the introduced method allows the performance to be evaluated using imprecise traffic measurements. Moreover, the fuzzy definitions of performance measures are convenient for uncertainty determination in traffic control decisions.