Country
The Local Rademacher Complexity of Lp-Norm Multiple Kernel Learning
Kloft, Marius, Blanchard, Gilles
We derive an upper bound on the local Rademacher complexity of Lp-norm multiple kernel learning, which yields a tighter excess risk bound than global approaches. Previous local approaches analyzed the case p=1 only while our analysis covers all cases $1\leq p\leq\infty$, assuming the different feature mappings corresponding to the different kernels to be uncorrelated. We also show a lower bound that shows that the bound is tight, and derive consequences regarding excess loss, namely fast convergence rates of the order $O(n^{-\frac{\alpha}{1+\alpha}})$, where $\alpha$ is the minimum eigenvalue decay rate of the individual kernels.
Continuous-Time Regression Models for Longitudinal Networks
Vu, Duy Q., Hunter, David, Smyth, Padhraic, Asuncion, Arthur U.
The development of statistical models for continuous-time longitudinal network data is of increasing interest in machine learning and social science. Leveraging ideas from survival and event history analysis, we introduce a continuous-time regression modeling framework for network event data that can incorporate both time-dependent network statistics and time-varying regression coefficients. We also develop an efficient inference scheme that allows our approach to scale to large networks. On synthetic and real-world data, empirical results demonstrate that the proposed inference approach can accurately estimate the coefficients of the regression model, which is useful for interpreting the evolution of the network; furthermore, the learned model has systematically better predictive performance compared to standard baseline methods.
Transfer from Multiple MDPs
Lazaric, Alessandro, Restelli, Marcello
Transfer reinforcement learning (RL) methods leverage on the experience collected on a set of source tasks to speed-up RL algorithms. A simple and effective approach is to transfer samples from source tasks and include them in the training set used to solve a target task. In this paper, we investigate the theoretical properties of this transfer method and we introduce novel algorithms adapting the transfer process on the basis of the similarity between source and target tasks. Finally, we report illustrative experimental results in a continuous chain problem.
A Brain-Machine Interface Operating with a Real-Time Spiking Neural Network Control Algorithm
Dethier, Julie, Nuyujukian, Paul, Eliasmith, Chris, Stewart, Terrence C., Elasaad, Shauki A., Shenoy, Krishna V., Boahen, Kwabena A.
Motor prostheses aim to restore function to disabled patients. Despite compelling proof of concept systems, barriers to clinical translation remain. One challenge is to develop a low-power, fully-implantable system that dissipates only minimal power so as not to damage tissue. To this end, we implemented a Kalman-filter based decoder via a spiking neural network (SNN) and tested it in brain-machine interface (BMI) experiments with a rhesus monkey. The Kalman filter was trained to predict the arm's velocity and mapped on to the SNN using the Neural Engineering Framework(NEF). A 2,000-neuron embedded Matlab SNN implementation runs in real-time and its closed-loop performance is quite comparable to that of the standard Kalman filter. The success of this closed-loop decoder holds promise for hardware SNN implementations of statistical signal processing algorithms on neuromorphic chips,which may offer power savings necessary to overcome a major obstacle to the successful clinical translation of neural motor prostheses. Present: Research Fellow F.R.S.-FNRS, Systmod Unit, University of Liege, Belgium.
Reinforcement Learning using Kernel-Based Stochastic Factorization
Barreto, Andre S., Precup, Doina, Pineau, Joelle
Kernel-based reinforcement-learning (KBRL) is a method for learning a decision policy from a set of sample transitions which stands out for its strong theoretical guarantees. However, the size of the approximator grows with the number of transitions, which makes the approach impractical for large problems. In this paper we introduce a novel algorithm to improve the scalability of KBRL. We resort to a special decomposition of a transition matrix, called stochastic factorization, to fix the size of the approximator while at the same time incorporating all the information contained in the data. The resulting algorithm, kernel-based stochastic factorization (KBSF), is much faster but still converges to a unique solution. We derive a theoretical upper bound for the distance between the value functions computed by KBRL and KBSF. The effectiveness of our method is illustrated with computational experiments on four reinforcement-learning problems, including a difficult task in which the goal is to learn a neurostimulation policy to suppress the occurrence of seizures in epileptic rat brains. We empirically demonstrate that the proposed approach is able to compress the information contained in KBRL's model. Also, on the tasks studied, KBSF outperforms two of the most prominent reinforcement-learning algorithms, namely least-squares policy iteration and fitted Q-iteration.
Active learning of neural response functions with Gaussian processes
Park, Mijung, Horwitz, Greg, Pillow, Jonathan W.
A sizable literature has focused on the problem of estimating a low-dimensional feature space capturing a neuron's stimulus sensitivity. However, comparatively little work has addressed the problem of estimating the nonlinear function from feature space to a neuron's output spike rate. Here, we use a Gaussian process (GP) prior over the infinite-dimensional space of nonlinear functions to obtain Bayesian estimates of the "nonlinearity" in the linear-nonlinear-Poisson (LNP) encoding model. This offers flexibility, robustness, and computational tractability compared to traditional methods (e.g., parametric forms, histograms, cubic splines). Most importantly, we develop a framework for optimal experimental design based on uncertainty sampling. This involves adaptively selecting stimuli to characterize the nonlinearity with as little experimental data as possible, and relies on a method for rapidly updating hyperparameters using the Laplace approximation. We apply these methods to data from color-tuned neurons in macaque V1. We estimate nonlinearities in the 3D space of cone contrasts, which reveal that V1 combines cone inputs in a highly nonlinear manner. With simulated experiments, we show that optimal design substantially reduces the amount of data required to estimate this nonlinear combination rule.
Improving Topic Coherence with Regularized Topic Models
Newman, David, Bonilla, Edwin V., Buntine, Wray
Topic models have the potential to improve search and browsing by extracting useful semantic themes from web pages and other text documents. When learned topics are coherent and interpretable, they can be valuable for faceted browsing, results set diversity analysis, and document retrieval. However, when dealing with small collections or noisy text (e.g. web search result snippets or blog posts), learned topics can be less coherent, less interpretable, and less useful. To overcome this, we propose two methods to regularize the learning of topic models. Our regularizers work by creating a structured prior over words that reflect broad patterns in the external data. Using thirteen datasets we show that both regularizers improve topic coherence and interpretability while learning a faithful representation of the collection of interest. Overall, this work makes topic models more useful across a broader range of text data.
Approximating Semidefinite Programs in Sublinear Time
In recent years semidefinite optimization has become a tool of major importance in various optimization and machine learning problems. In many of these problems the amount of data in practice is so large that there is a constant need for faster algorithms. In this work we present the first sublinear time approximation algorithm for semidefinite programs which we believe may be useful for such problems in which the size of data may cause even linear time algorithms to have prohibitive running times in practice. We present the algorithm and its analysis alongside with some theoretical lower bounds and an improved algorithm for the special problem of supervised learning of a distance metric.
RTRMC: A Riemannian trust-region method for low-rank matrix completion
Boumal, Nicolas, Absil, Pierre-antoine
We consider large matrices of low rank. We address the problem of recovering such matrices when most of the entries are unknown. Matrix completion finds applications in recommender systems. In this setting, the rows of the matrix may correspond to items and the columns may correspond to users. The known entries are the ratings given by users to some items. The aim is to predict the unobserved ratings. This problem is commonly stated in a constrained optimization framework. We follow an approach that exploits the geometry of the low-rank constraint to recast the problem as an unconstrained optimization problem on the Grassmann manifold. We then apply first- and second-order Riemannian trust-region methods to solve it. The cost of each iteration is linear in the number of known entries. Our methods, RTRMC 1 and 2, outperform state-of-the-art algorithms on a wide range of problem instances.
A blind sparse deconvolution method for neural spike identification
Ekanadham, Chaitanya, Tranchina, Daniel, Simoncelli, Eero P.
We consider the problem of estimating neural spikes from extracellular voltage recordings. Most current methods are based on clustering, which requires substantial human supervision and produces systematic errors by failing to properly handle temporally overlapping spikes. We formulate the problem as one of statistical inference, in which the recorded voltage is a noisy sum of the spike trains of each neuron convolved with its associated spike waveform. Joint maximum-a-posteriori (MAP) estimation of the waveforms and spikes is then a blind deconvolution problem in which the coefficients are sparse. We develop a block-coordinate descent method for approximating the MAP solution. We validate our method on data simulated according to the generative model, as well as on real data for which ground truth is available via simultaneous intracellular recordings. In both cases, our method substantially reduces the number of missed spikes and false positives when compared to a standard clustering algorithm, primarily by recovering temporally overlapping spikes. The method offers a fully automated alternative to clustering methods that is less susceptible to systematic errors.