Goto

Collaborating Authors

 Country


A Reconstruction Error Formulation for Semi-Supervised Multi-task and Multi-view Learning

arXiv.org Machine Learning

A significant challenge to make learning techniques more suitable for general purpose use is to move beyond i) complete supervision, ii) low dimensional data, iii) a single task and single view per instance. Solving these challenges allows working with "Big Data" problems that are typically high dimensional with multiple (but possibly incomplete) labelings and views. While other work has addressed each of these problems separately, in this paper we show how to address them together, namely semi-supervised dimension reduction for multi-task and multi-view learning (SSDR-MML), which performs optimization for dimension reduction and label inference in semi-supervised setting. The proposed framework is designed to handle both multi-task and multi-view learning settings, and can be easily adapted to many useful applications. Information obtained from all tasks and views is combined via reconstruction errors in a linear fashion that can be efficiently solved using an alternating optimization scheme. Our formulation has a number of advantages. We explicitly model the information combining mechanism as a data structure (a weight/nearest-neighbor matrix) which allows investigating fundamental questions in multi-task and multi-view learning. We address one such question by presenting a general measure to quantify the success of simultaneous learning of multiple tasks or from multiple views. We show that our SSDR-MML approach can outperform many state-of-the-art baseline methods and demonstrate the effectiveness of connecting dimension reduction and learning.


Peek Arc Consistency

arXiv.org Artificial Intelligence

This paper studies peek arc consistency, a reasoning technique that extends the well-known arc consistency technique for constraint satisfaction. In contrast to other more costly extensions of arc consistency that have been studied in the literature, peek arc consistency requires only linear space and quadratic time and can be parallelized in a straightforward way such that it runs in linear time with a linear number of processors. We demonstrate that for various constraint languages, peek arc consistency gives a polynomial-time decision procedure for the constraint satisfaction problem. We also present an algebraic characterization of those constraint languages that can be solved by peek arc consistency, and study the robustness of the algorithm.


On the influence of intelligence in (social) intelligence testing environments

arXiv.org Artificial Intelligence

This paper analyses the influence of including agents of different degrees of intelligence in a multiagent system. The goal is to better understand how we can develop intelligence tests that can evaluate social intelligence. We analyse several reinforcement algorithms in several contexts of cooperation and competition. Our experimental setting is inspired by the recently developed Darwin-Wallace distribution.


Multi-view predictive partitioning in high dimensions

arXiv.org Machine Learning

Many modern data mining applications are concerned with the analysis of datasets in which the observations are described by paired high-dimensional vectorial representations or "views". Some typical examples can be found in web mining and genomics applications. In this article we present an algorithm for data clustering with multiple views, Multi-View Predictive Partitioning (MVPP), which relies on a novel criterion of predictive similarity between data points. We assume that, within each cluster, the dependence between multivariate views can be modelled by using a two-block partial least squares (TB-PLS) regression model, which performs dimensionality reduction and is particularly suitable for high-dimensional settings. The proposed MVPP algorithm partitions the data such that the within-cluster predictive ability between views is maximised. The proposed objective function depends on a measure of predictive influence of points under the TB-PLS model which has been derived as an extension of the PRESS statistic commonly used in ordinary least squares regression. Using simulated data, we compare the performance of MVPP to that of competing multi-view clustering methods which rely upon geometric structures of points, but ignore the predictive relationship between the two views. State-of-art results are obtained on benchmark web mining datasets.


The implications of embodiment for behavior and cognition: animal and robotic case studies

arXiv.org Artificial Intelligence

In this paper, we will argue that if we want to understand the function of the brain (or the control in the case of robots), we must understand how the brain is embedded into the physical system, and how the organism interacts with the real world. While embodiment has often been used in its trivial meaning, i.e. 'intelligence requires a body', the concept has deeper and more important implications, concerned with the relation between physical and information (neural, control) processes. A number of case studies are presented to illustrate the concept. These involve animals and robots and are concentrated around locomotion, grasping, and visual perception. A theoretical scheme that can be used to embed the diverse case studies will be presented. Finally, we will establish a link between the low-level sensory-motor processes and cognition. We will present an embodied view on categorization, and propose the concepts of 'body schema' and 'forward models' as a natural extension of the embodied approach toward first representations.


Robust recovery of multiple subspaces by geometric l_p minimization

arXiv.org Machine Learning

We assume i.i.d. data sampled from a mixture distribution with K components along fixed d-dimensional linear subspaces and an additional outlier component. For p>0, we study the simultaneous recovery of the K fixed subspaces by minimizing the l_p-averaged distances of the sampled data points from any K subspaces. Under some conditions, we show that if $01 and p>1, then the underlying subspaces cannot be recovered or even nearly recovered by l_p minimization. The results of this paper partially explain the successes and failures of the basic approach of l_p energy minimization for modeling data by multiple subspaces.


OWL: Yet to arrive on the Web of Data?

arXiv.org Artificial Intelligence

Seven years on from OWL becoming a W3C recommendation, and two years on from the more recent OWL 2 W3C recommendation, OWL has still experienced only patchy uptake on the Web. Although certain OWL features (like owl:sameAs) are very popular, other features of OWL are largely neglected by publishers in the Linked Data world. This may suggest that despite the promise of easy implementations and the proposal of tractable profiles suggested in OWL's second version, there is still no "right" standard fragment for the Linked Data community. In this paper, we (1) analyse uptake of OWL on the Web of Data, (2) gain insights into the OWL fragment that is actually used/usable on the Web, where we arrive at the conclusion that this fragment is likely to be a simplified profile based on OWL RL, (3) propose and discuss such a new fragment, which we call OWL LD (for Linked Data).


Learning RoboCup-Keepaway with Kernels

arXiv.org Artificial Intelligence

We apply kernel-based methods to solve the difficult reinforcement learning problem of 3vs2 keepaway in RoboCup simulated soccer. Key challenges in keepaway are the high-dimensionality of the state space (rendering conventional discretization-based function approximation like tilecoding infeasible), the stochasticity due to noise and multiple learning agents needing to cooperate (meaning that the exact dynamics of the environment are unknown) and real-time learning (meaning that an efficient online implementation is required). We employ the general framework of approximate policy iteration with least-squares-based policy evaluation. As underlying function approximator we consider the family of regularization networks with subset of regressors approximation. The core of our proposed solution is an efficient recursive implementation with automatic supervised selection of relevant basis functions. Simulation results indicate that the behavior learned through our approach clearly outperforms the best results obtained earlier with tilecoding by Stone et al. (2005).


Gaussian Processes for Sample Efficient Reinforcement Learning with RMAX-like Exploration

arXiv.org Artificial Intelligence

We present an implementation of model-based online reinforcement learning (RL) for continuous domains with deterministic transitions that is specifically designed to achieve low sample complexity. To achieve low sample complexity, since the environment is unknown, an agent must intelligently balance exploration and exploitation, and must be able to rapidly generalize from observations. While in the past a number of related sample efficient RL algorithms have been proposed, to allow theoretical analysis, mainly model-learners with weak generalization capabilities were considered. Here, we separate function approximation in the model learner (which does require samples) from the interpolation in the planner (which does not require samples). For model-learning we apply Gaussian processes regression (GP) which is able to automatically adjust itself to the complexity of the problem (via Bayesian hyperparameter selection) and, in practice, often able to learn a highly accurate model from very little data. In addition, a GP provides a natural way to determine the uncertainty of its predictions, which allows us to implement the "optimism in the face of uncertainty" principle used to efficiently control exploration. Our method is evaluated on four common benchmark domains.


Feature Selection for Value Function Approximation Using Bayesian Model Selection

arXiv.org Artificial Intelligence

Feature selection in reinforcement learning (RL), i.e. choosing basis functions such that useful approximations of the unkown value function can be obtained, is one of the main challenges in scaling RL to real-world applications. Here we consider the Gaussian process based framework GPTD for approximate policy evaluation, and propose feature selection through marginal likelihood optimization of the associated hyperparameters. Our approach has two appealing benefits: (1) given just sample transitions, we can solve the policy evaluation problem fully automatically (without looking at the learning task, and, in theory, independent of the dimensionality of the state space), and (2) model selection allows us to consider more sophisticated kernels, which in turn enable us to identify relevant subspaces and eliminate irrelevant state variables such that we can achieve substantial computational savings and improved prediction performance.