Country
Fully Automated Design of Super-High-Rise Building Structures by a Hybrid AI Model on a Massively Parallel Machine
This article presents an innovative research project (sponsored by the National Science Foundation, the American Iron and Steel Institute, and the American Institute of Steel Construction) where computationally elegant algorithms based on the integration of a novel connectionist computing model, mathematical optimization, and a massively parallel computer architecture are used to automate the complex process of engineering design.
Cue Phrase Classification Using Machine Learning
Cue phrases may be used in a discourse sense to explicitly signal discourse structure, but also in a sentential sense to convey semantic rather than structural information. Correctly classifying cue phrases as discourse or sentential is critical in natural language processing systems that exploit discourse structure, e.g., for performing tasks such as anaphora resolution and plan recognition. This paper explores the use of machine learning for classifying cue phrases as discourse or sentential. Two machine learning programs (Cgrendel and C4.5) are used to induce classification models from sets of pre-classified cue phrases and their features in text and speech. Machine learning is shown to be an effective technique for not only automating the generation of classification models, but also for improving upon previous results. When compared to manually derived classification models already in the literature, the learned models often perform with higher accuracy and contain new linguistic insights into the data. In addition, the ability to automatically construct classification models makes it easier to comparatively analyze the utility of alternative feature representations of the data. Finally, the ease of retraining makes the learning approach more scalable and flexible than manual methods.
Spatial Aggregation: Theory and Applications
Visual thinking plays an important role in scientific reasoning. Based on the research in automating diverse reasoning tasks about dynamical systems, nonlinear controllers, kinematic mechanisms, and fluid motion, we have identified a style of visual thinking, imagistic reasoning. Imagistic reasoning organizes computations around image-like, analogue representations so that perceptual and symbolic operations can be brought to bear to infer structure and behavior. Programs incorporating imagistic reasoning have been shown to perform at an expert level in domains that defy current analytic or numerical methods. We have developed a computational paradigm, spatial aggregation, to unify the description of a class of imagistic problem solvers. A program written in this paradigm has the following properties. It takes a continuous field and optional objective functions as input, and produces high-level descriptions of structure, behavior, or control actions. It computes a multi-layer of intermediate representations, called spatial aggregates, by forming equivalence classes and adjacency relations. It employs a small set of generic operators such as aggregation, classification, and localization to perform bidirectional mapping between the information-rich field and successively more abstract spatial aggregates. It uses a data structure, the neighborhood graph, as a common interface to modularize computations. To illustrate our theory, we describe the computational structure of three implemented problem solvers -- KAM, MAPS, and HIPAIR --- in terms of the spatial aggregation generic operators by mixing and matching a library of commonly used routines.
Applied AI News
Microelectronics supplier TRW optimizes the combustion process Clothing manufacturer Wrangler (Redondo Beach, CA) is using virtual in a coal-fired utility boiler, (Greensboro, NC) has developed a reality (VR) to decontaminate nuclear reducing nitrogen oxide emissions neural network system to improve facilities. The company has developed and loss on ignition while improving production planning and forecasting. An applications to its 36,000 Group (Washington, DC) has expert system makes recommendations employees worldwide. Pacific Gas & Electric (PG&E) (San provides real-time restoration of NeuralWare (Pittsburgh, PA), a Francisco, CA), a public utility, has telecommunications services in areas provider of neural network software, affected by disaster or accidents. The system allows PG&E outage through a series of tests, 24 for target and path optimization to offer customers flexible energy hours a day, 7 days a week.
Life in the Fast Lane: The Evolution of an Adaptive Vehicle Control System
Giving robots the ability to operate in the real world has been, and continues to be, one of the most difficult tasks in AI research. Since 1987, researchers at Carnegie Mellon University have been investigating one such task. Their research has been focused on using adaptive, vision-based systems to increase the driving performance of the Navlab line of on-road mobile robots. This research has led to the development of a neural network system that can learn to drive on many road types simply by watching a human teacher. This article describes the evolution of this system from a research project in machine learning to a robust driving system capable of executing tactical driving maneuvers such as lane changing and intersection navigation.
Collaborative Systems (AAAI-94 Presidential Address)
The construction of computer systems that are intelligent, collaborative problem-solving partners is an important goal for both the science of AI and its application. From the scientific perspective, the development of theories and mechanisms to enable building collaborative systems presents exciting research challenges across AI subfields. From the applications perspective, the capability to collaborate with users and other systems is essential if large-scale information systems of the future are to assist users in finding the information they need and solving the problems they have. In this address, it is argued that collaboration must be designed into systems from the start; it cannot be patched on. Key features of collaborative activity are described, the scientific base provided by recent AI research is discussed, and several of the research challenges posed by collaboration are presented. It is further argued that research on, and the development of, collaborative systems should itself be a collaborative endeavor -- within AI, across subfields of computer science, and with researchers in other fields.
The 1996 AAAI Spring Symposia Reports
Gil, Yolanda, Sen, Sandip, Kohane, Isaac, Olivier, Patrick, Nakata, Keiichi, Eugenio, Barbara Di, Green, Nancy, Dean, Thomas, Hearst, Marti, Nourbakhsh, Illah R.
The Association for the Advancement of Artificial Intelligence held its 1996 Spring Symposia Series on March 27 to 29 at Stanford University. This article contains summaries of the eight symposia that were conducted: (1) Acquisition, Learning, and Demonstration: Automating Tasks for Users; (2) Adaptation, Coevolution, and Learning in Multiagent Systems; (3) Artificial Intelligence in Medicine: Applications of Current Technologies; (4) Cognitive and Computational Models of Spatial Representation; (5) Computational Implicature: Computational Approaches to Interpreting and Generating Conversational Implicature; (6) Computational Issues in Learning Models of Dynamic Systems; (7) Machine Learning in Information Access; and (8) Planning with Incomplete Information for Robot Problems.
Eighth Workshop on the Validation and Verification of Knowledge-Based Systems
The Workshop on the Validation and Verification of Knowledge-Based Systems gathers researchers from government, industry, and academia to present the most recent information about this important development aspect of knowledge-based systems (KBSs). The 1995 workshop focused on nontraditional KBSs that are developed using more than just the simple rule-based paradigm. This new focus showed how researchers are adjusting to the shift in KBS technology from stand-alone rule-based expert systems to embedded systems that use object-oriented technology, uncertainty, and nonmonotonic reasoning.
From Digitized Images to Online Catalogs Data Mining a Sky Survey
Fayyad, Usama M., Djorgovski, S. G., Weir, Nicholas
The value of scientific digital-image libraries seldom lies in the pixels of images. For large collections of images, such as those resulting from astronomy sky surveys, the typical useful product is an online database cataloging entries of interest. We focus on the automation of the cataloging effort of a major sky survey and the availability of digital libraries in general. The SKICAT system automates the reduction and analysis of the three terabytes worth of images, expected to contain on the order of 2 billion sky objects. For the primary scientific analysis of these data, it is necessary to detect, measure, and classify every sky object. SKICAT integrates techniques for image processing, classification learning, database management, and visualization. The learning algorithms are trained to classify the detected objects and can classify objects too faint for visual classification with an accuracy level exceeding 90 percent. This accuracy level increases the number of classified objects in the final catalog threefold relative to the best results from digitized photographic sky surveys to date. Hence, learning algorithms played a powerful and enabling role and solved a difficult, scientifically significant problem, enabling the consistent, accurate classification and the ease of access and analysis of an otherwise unfathomable data set.
Hybrid Connectionist-Symbolic Modules: A Report from the IJCAI-95 Workshop on Connectionist-Symbolic Integration
The Workshop on Connectionist-Symbolic Integration: From Unified to Hybrid Approaches was held on 19 to 20 August 1995 in Montreal, Canada, in conjunction with the Fourteenth International Joint Conference on Artificial Intelligence. The focus of the workshop was on learning and architectures that feature hybrid representations and support hybrid learning. The general consensus was that hybrid connectionist-symbolic models constitute a promising avenue to the development of more robust, more powerful, and more versatile architectures for both cognitive modeling and intelligent systems.