Goto

Collaborating Authors

 Country


Analysis of Unstandardized Contributions in Cross Connected Networks

Neural Information Processing Systems

Understanding knowledge representations in neural nets has been a difficult problem. Principal components analysis (PCA) of contributions (products of sending activations and connection weights) has yielded valuable insights into knowledge representations, but much of this work has focused on the correlation matrix of contributions. The present work shows that analyzing the variance-covariance matrix of contributions yields more valid insights by taking account of weights.


Convergence Properties of the K-Means Algorithms

Neural Information Processing Systems

K-Means is a popular clustering algorithm used in many applications, including the initialization of more computationally expensive algorithms (Gaussian mixtures, Radial Basis Functions, Learning Vector Quantization and some Hidden Markov Models). The practice of this initialization procedure often gives the frustrating feeling that K-Means performs most of the task in a small fraction of the overall time. This motivated us to better understand this convergence speed. A second reason lies in the traditional debate between hard threshold (e.g.



Higher Order Statistical Decorrelation without Information Loss

Neural Information Processing Systems

A neural network learning paradigm based on information theory is proposed as a way to perform in an unsupervised fashion, redundancy reduction among the elements of the output layer without loss of information from the sensory input. The model developed performs nonlinear decorrelation up to higher orders of the cumulant tensors and results in probabilistic ally independent components of the output layer. This means that we don't need to assume Gaussian distribution neither at the input nor at the output. The theory presented is related to the unsupervised-learning theory of Barlow, which proposes redundancy reduction as the goal of cognition. When nonlinear units are used nonlinear principal component analysis is obtained.


A Computational Model of Prefrontal Cortex Function

Neural Information Processing Systems

Accumulating data from neurophysiology and neuropsychology have suggested two information processing roles for prefrontal cortex (PFC): 1) short-term active memory; and 2) inhibition. We present a new behavioral task and a computational model which were developed in parallel. The task was developed to probe both of these prefrontal functions simultaneously, and produces a rich set of behavioral data that act as constraints on the model. The model is implemented in continuous-time, thus providing a natural framework in which to study the temporal dynamics of processing in the task. We show how the model can be used to examine the behavioral consequences of neuromodulation in PFC. Specifically, we use the model to make novel and testable predictions regarding the behavioral performance of schizophrenics, who are hypothesized to suffer from reduced dopaminergic tone in this brain area.


Boltzmann Chains and Hidden Markov Models

Neural Information Processing Systems

Statistical models of discrete time series have a wide range of applications, most notably to problems in speech recognition (Juang & Rabiner, 1991) and molecular biology (Baldi, Chauvin, Hunkapiller, & McClure, 1992). A common problem in these fields is to find a probabilistic model, and a set of model parameters, that 436 Lawrence K. Saul, Michael I. Jordan


Factorial Learning and the EM Algorithm

Neural Information Processing Systems

Many real world learning problems are best characterized by an interaction of multiple independent causes or factors. Discovering such causal structure from the data is the focus of this paper. Based on Zemel and Hinton's cooperative vector quantizer (CVQ) architecture, an unsupervised learning algorithm is derived from the Expectation-Maximization (EM) framework. Due to the combinatorial nature of the data generation process, the exact E-step is computationally intractable. Two alternative methods for computing the E-step are proposed: Gibbs sampling and mean-field approximation, and some promising empirical results are presented.


Nonlinear Image Interpolation using Manifold Learning

Neural Information Processing Systems

The problem of interpolating between specified images in an image sequence is a simple, but important task in model-based vision. We describe an approach based on the abstract task of "manifold learning" and present results on both synthetic and real image sequences. This problem arose in the development of a combined lipreading and speech recognition system.



Temporal Dynamics of Generalization in Neural Networks

Neural Information Processing Systems

This paper presents a rigorous characterization of how a general nonlinear learning machine generalizes during the training process when it is trained on a random sample using a gradient descent algorithm based on reduction of training error. It is shown, in particular, that best generalization performance occurs, in general, before the global minimum of the training error is achieved. The different roles played by the complexity of the machine class and the complexity of the specific machine in the class during learning are also precisely demarcated. 1 INTRODUCTION In learning machines such as neural networks, two major factors that affect the'goodness of fit' of the examples are network size (complexity) and training time. These are also the major factors that affect the generalization performance of the network. Many theoretical studies exploring the relation between generalization performance and machine complexity support the parsimony heuristics suggested by Occam's razor, to wit that amongst machines with similar training performance one should opt for the machine of least complexity.