Country
Constraint Processing in Lifted Probabilistic Inference
Kisynski, Jacek, Poole, David L
First-order probabilistic models combine representational power of first-order logic with graphical models. There is an ongoing effort to design lifted inference algorithms for first-order probabilistic models. We analyze lifted inference from the perspective of constraint processing and, through this viewpoint, we analyze and compare existing approaches and expose their advantages and limitations. Our theoretical results show that the wrong choice of constraint processing method can lead to exponential increase in computational complexity. Our empirical tests confirm the importance of constraint processing in lifted inference. This is the first theoretical and empirical study of constraint processing in lifted inference.
Logical Inference Algorithms and Matrix Representations for Probabilistic Conditional Independence
Logical inference algorithms for conditional independence (CI) statements have important applications from testing consistency during knowledge elicitation to constraintbased structure learning of graphical models. We prove that the implication problem for CI statements is decidable, given that the size of the domains of the random variables is known and fixed. We will present an approximate logical inference algorithm which combines a falsification and a novel validation algorithm. The validation algorithm represents each set of CI statements as a sparse 0-1 matrix A and validates instances of the implication problem by solving specific linear programs with constraint matrix A. We will show experimentally that the algorithm is both effective and efficient in validating and falsifying instances of the probabilistic CI implication problem.
Temporal Action-Graph Games: A New Representation for Dynamic Games
Jiang, Albert Xin, Leyton-Brown, Kevin, Pfeffer, Avi
In this paper we introduce temporal action graph games (TAGGs), a novel graphical representation of imperfect-information extensive form games. We show that when a game involves anonymity or context-specific utility independencies, its encoding as a TAGG can be much more compact than its direct encoding as a multiagent influence diagram (MAID).We also show that TAGGs can be understood as indirect MAID encodings in which many deterministic chance nodes are introduced. We provide an algorithm for computing with TAGGs, and show both theoretically and empirically that our approach improves significantly on the previous state of the art.
Convexifying the Bethe Free Energy
Meshi, Ofer, Jaimovich, Ariel, Globerson, Amir, Friedman, Nir
The introduction of loopy belief propagation (LBP) revitalized the application of graphical models in many domains. Many recent works present improvements on the basic LBP algorithm in an attempt to overcome convergence and local optima problems. Notable among these are convexified free energy approximations that lead to inference procedures with provable convergence and quality properties. However, empirically LBP still outperforms most of its convex variants in a variety of settings, as we also demonstrate here. Motivated by this fact we seek convexified free energies that directly approximate the Bethe free energy. We show that the proposed approximations compare favorably with state-of-the art convex free energy approximations.
The Temporal Logic of Causal Structures
Kleinberg, Samantha, Mishra, Bud
Computational analysis of time-course data with an underlying causal structure is needed in a variety of domains, including neural spike trains, stock price movements, and gene expression levels. However, it can be challenging to determine from just the numerical time course data alone what is coordinating the visible processes, to separate the underlying prima facie causes into genuine and spurious causes and to do so with a feasible computational complexity. For this purpose, we have been developing a novel algorithm based on a framework that combines notions of causality in philosophy with algorithmic approaches built on model checking and statistical techniques for multiple hypotheses testing. The causal relationships are described in terms of temporal logic formulae, reframing the inference problem in terms of model checking. The logic used, PCTL, allows description of both the time between cause and effect and the probability of this relationship being observed. We show that equipped with these causal formulae with their associated probabilities we may compute the average impact a cause makes to its effect and then discover statistically significant causes through the concepts of multiple hypothesis testing (treating each causal relationship as a hypothesis), and false discovery control. By exploring a well-chosen family of potentially all significant hypotheses with reasonably minimal description length, it is possible to tame the algorithm's computational complexity while exploring the nearly complete search-space of all prima facie causes. We have tested these ideas in a number of domains and illustrate them here with two examples.
Generating Optimal Plans in Highly-Dynamic Domains
Fritz, Christian, McIlraith, Sheila
Generating optimal plans in highly dynamic environments is challenging. Plans are predicated on an assumed initial state, but this state can change unexpectedly during plan generation, potentially invalidating the planning effort. In this paper we make three contributions: (1) We propose a novel algorithm for generating optimal plans in settings where frequent, unexpected events interfere with planning. It is able to quickly distinguish relevant from irrelevant state changes, and to update the existing planning search tree if necessary. (2) We argue for a new criterion for evaluating plan adaptation techniques: the relative running time compared to the "size" of changes. This is significant since during recovery more changes may occur that need to be recovered from subsequently, and in order for this process of repeated recovery to terminate, recovery time has to converge. (3) We show empirically that our approach can converge and find optimal plans in environments that would ordinarily defy planning due to their high dynamics.
Most Relevant Explanation: Properties, Algorithms, and Evaluations
Yuan, Changhe, Liu, Xiaolu, Lu, Tsai-Ching, Lim, Heejin
Most Relevant Explanation (MRE) is a method for finding multivariate explanations for given evidence in Bayesian networks [12]. This paper studies the theoretical properties of MRE and develops an algorithm for finding multiple top MRE solutions. Our study shows that MRE relies on an implicit soft relevance measure in automatically identifying the most relevant target variables and pruning less relevant variables from an explanation. The soft measure also enables MRE to capture the intuitive phenomenon of explaining away encoded in Bayesian networks. Furthermore, our study shows that the solution space of MRE has a special lattice structure which yields interesting dominance relations among the solutions. A K-MRE algorithm based on these dominance relations is developed for generating a set of top solutions that are more representative. Our empirical results show that MRE methods are promising approaches for explanation in Bayesian networks.
Regret-based Reward Elicitation for Markov Decision Processes
Regan, Kevin, Boutilier, Craig
The specification of aMarkov decision process (MDP) can be difficult. Reward function specification is especially problematic; in practice, it is often cognitively complex and time-consuming for users to precisely specify rewards. This work casts the problem of specifying rewards as one of preference elicitation and aims to minimize the degree of precision with which a reward function must be specified while still allowing optimal or near-optimal policies to be produced. We first discuss how robust policies can be computed for MDPs given only partial reward information using the minimax regret criterion. We then demonstrate how regret can be reduced by efficiently eliciting reward information using bound queries, using regret-reduction as a means for choosing suitable queries. Empirical results demonstrate that regret-based reward elicitation offers an effective way to produce near-optimal policies without resorting to the precise specification of the entire reward function.
Mean Field Variational Approximation for Continuous-Time Bayesian Networks
Cohn, Ido, El-Hay, Tal, Friedman, Nir, Kupferman, Raz
Continuous-time Bayesian networks is a natural structured representation language for multicomponent stochastic processes that evolve continuously over time. Despite the compact representation, inference in such models is intractable even in relatively simple structured networks. Here we introduce a mean field variational approximation in which we use a product of inhomogeneous Markov processes to approximate a distribution over trajectories. This variational approach leads to a globally consistent distribution, which can be efficiently queried. Additionally, it provides a lower bound on the probability of observations, thus making it attractive for learning tasks. We provide the theoretical foundations for the approximation, an efficient implementation that exploits the wide range of highly optimized ordinary differential equations (ODE) solvers, experimentally explore characterizations of processes for which this approximation is suitable, and show applications to a large-scale realworld inference problem.
Improved Mean and Variance Approximations for Belief Net Responses via Network Doubling
Hooper, Peter, Abbasi-Yadkori, Yasin, Greiner, Russell, Hoehn, Bret
A Bayesian belief network models a joint distribution with an directed acyclic graph representing dependencies among variables and network parameters characterizing conditional distributions. The parameters are viewed as random variables to quantify uncertainty about their values. Belief nets are used to compute responses to queries; i.e., conditional probabilities of interest. A query is a function of the parameters, hence a random variable. Van Allen et al. (2001, 2008) showed how to quantify uncertainty about a query via a delta method approximation of its variance. We develop more accurate approximations for both query mean and variance. The key idea is to extend the query mean approximation to a "doubled network" involving two independent replicates. Our method assumes complete data and can be applied to discrete, continuous, and hybrid networks (provided discrete variables have only discrete parents). We analyze several improvements, and provide empirical studies to demonstrate their effectiveness.