Country
Knowledge revision in systems based on an informed tree search strategy : application to cartographic generalisation
Taillandier, Patrick, Duchêne, Cécile, Drogoul, Alexis
Many real world problems can be expressed as optimisation problems. Solving this kind of problems means to find, among all possible solutions, the one that maximises an evaluation function. One approach to solve this kind of problem is to use an informed search strategy. The principle of this kind of strategy is to use problem-specific knowledge beyond the definition of the problem itself to find solutions more efficiently than with an uninformed strategy. This kind of strategy demands to define problem-specific knowledge (heuristics). The efficiency and the effectiveness of systems based on it directly depend on the used knowledge quality. Unfortunately, acquiring and maintaining such knowledge can be fastidious. The objective of the work presented in this paper is to propose an automatic knowledge revision approach for systems based on an informed tree search strategy. Our approach consists in analysing the system execution logs and revising knowledge based on these logs by modelling the revision problem as a knowledge space exploration problem. We present an experiment we carried out in an application domain where informed search strategies are often used: cartographic generalisation.
Using Belief Theory to Diagnose Control Knowledge Quality. Application to cartographic generalisation
Taillandier, Patrick, Duchêne, Cécile, Drogoul, Alexis
Both humans and artificial systems frequently use trial and error methods to problem solving. In order to be effective, this type of strategy implies having high quality control knowledge to guide the quest for the optimal solution. Unfortunately, this control knowledge is rarely perfect. Moreover, in artificial systems-as in humans-self-evaluation of one's own knowledge is often difficult. Yet, this self-evaluation can be very useful to manage knowledge and to determine when to revise it. The objective of our work is to propose an automated approach to evaluate the quality of control knowledge in artificial systems based on a specific trial and error strategy, namely the informed tree search strategy. Our revision approach consists in analysing the system's execution logs, and in using the belief theory to evaluate the global quality of the knowledge. We present a real-world industrial application in the form of an experiment using this approach in the domain of cartographic generalisation. Thus far, the results of using our approach have been encouraging.
Quantum Interference in Cognition: Structural Aspects of the Brain
Aerts, Diederik, Sozzo, Sandro
We identify the presence of typically quantum effects, namely 'superposition' and 'interference', in what happens when human concepts are combined, and provide a quantum model in complex Hilbert space that represents faithfully experimental data measuring the situation of combining concepts. Our model shows how 'interference of concepts' explains the effects of underextension and overextension when two concepts combine to the disjunction of these two concepts. This result supports our earlier hypothesis that human thought has a superposed two-layered structure, one layer consisting of 'classical logical thought' and a superposed layer consisting of 'quantum conceptual thought'. Possible connections with recent findings of a 'grid-structure' for the brain are analyzed, and influences on the mind/brain relation, and consequences on applied disciplines, such as artificial intelligence and quantum computation, are considered.
EHRs Connect Research and Practice: Where Predictive Modeling, Artificial Intelligence, and Clinical Decision Support Intersect
Bennett, Casey, Doub, Tom, Selove, Rebecca
Objectives: Electronic health records (EHRs) are only a first step in capturing and utilizing health-related data - the challenge is turning that data into useful information. Furthermore, EHRs are increasingly likely to include data relating to patient outcomes, functionality such as clinical decision support, and genetic information as well, and, as such, can be seen as repositories of increasingly valuable information about patients' health conditions and responses to treatment over time. Methods: We describe a case study of 423 patients treated by Centerstone within Tennessee and Indiana in which we utilized electronic health record data to generate predictive algorithms of individual patient treatment response. Multiple models were constructed using predictor variables derived from clinical, financial and geographic data. Results: For the 423 patients, 101 deteriorated, 223 improved and in 99 there was no change in clinical condition. Based on modeling of various clinical indicators at baseline, the highest accuracy in predicting individual patient response ranged from 70-72% within the models tested. In terms of individual predictors, the Centerstone Assessment of Recovery Level - Adult (CARLA) baseline score was most significant in predicting outcome over time (odds ratio 4.1 + 2.27). Other variables with consistently significant impact on outcome included payer, diagnostic category, location and provision of case management services. Conclusions: This approach represents a promising avenue toward reducing the current gap between research and practice across healthcare, developing data-driven clinical decision support based on real-world populations, and serving as a component of embedded clinical artificial intelligences that "learn" over time.
What's in an `is about' link? Chemical diagrams and the Information Artifact Ontology
Hastings, Janna, Batchelor, Colin, Neuhaus, Fabian, Steinbeck, Christoph
The Information Artifact Ontology is an ontology in the domain of information entities. Core to the definition of what it is to be an information entity is the claim that an information entity must be `about' something, which is encoded in an axiom expressing that all information entities are about some entity. This axiom comes into conflict with ontological realism, since many information entities seem to be about non-existing entities, such as hypothetical molecules. We discuss this problem in the context of diagrams of molecules, a kind of information entity pervasively used throughout computational chemistry. We then propose a solution that recognizes that information entities such as diagrams are expressions of diagrammatic languages. In so doing, we not only address the problem of classifying diagrams that seem to be about non-existing entities but also allow a more sophisticated categorisation of information entities.
Structured sparsity through convex optimization
Bach, Francis, Jenatton, Rodolphe, Mairal, Julien, Obozinski, Guillaume
Sparse estimation methods are aimed at using or obtaining parsimonious representations of data or models. While naturally cast as a combinatorial optimization problem, variable or feature selection admits a convex relaxation through the regularization by the $\ell_1$-norm. In this paper, we consider situations where we are not only interested in sparsity, but where some structural prior knowledge is available as well. We show that the $\ell_1$-norm can then be extended to structured norms built on either disjoint or overlapping groups of variables, leading to a flexible framework that can deal with various structures. We present applications to unsupervised learning, for structured sparse principal component analysis and hierarchical dictionary learning, and to supervised learning in the context of non-linear variable selection.
Efficient hierarchical clustering for continuous data
Henao, Ricardo, Lucas, Joseph E.
We present an new sequential Monte Carlo sampler for coalescent based Bayesian hierarchical clustering. Our model is appropriate for modeling non-i.i.d. data and offers a substantial reduction of computational cost when compared to the original sampler without resorting to approximations. We also propose a quadratic complexity approximation that in practice shows almost no loss in performance compared to its counterpart. We show that as a byproduct of our formulation, we obtain a greedy algorithm that exhibits performance improvement over other greedy algorithms, particularly in small data sets. In order to exploit the correlation structure of the data, we describe how to incorporate Gaussian process priors in the model as a flexible way to model non-i.i.d. data. Results on artificial and real data show significant improvements over closely related approaches.
Automatic Sampling of Geographic objects
Taillandier, Patrick, Gaffuri, Julien
Today, one's disposes of large datasets composed of thousands of geographic objects. However, for many processes, which require the appraisal of an expert or much computational time, only a small part of these objects can be taken into account. In this context, robust sampling methods become necessary. In this paper, we propose a sampling method based on clustering techniques. Our method consists in dividing the objects in clusters, then in selecting in each cluster, the most representative objects. A case-study in the context of a process dedicated to knowledge revision for geographic data generalisation is presented. This case-study shows that our method allows to select relevant samples of objects.
Avian Influenza (H5N1) Warning System using Dempster-Shafer Theory and Web Mapping
Maseleno, Andino, Hasan, Md. Mahmud
Based on Cumulative Number of Confirmed Human Cases of Avian Influenza (H5N1) Reported to World Health Organization (WHO) in the 2011 from 15 countries, Indonesia has the largest number death because Avian Influenza which 146 deaths. In this research, the researcher built a Web Mapping and Dempster-Shafer theory as early warning system of avian influenza. Early warning is the provision of timely and effective information, through identified institutions, that allows individuals exposed to a hazard to take action to avoid or reduce their risk and prepare for effective response. In this paper as example we use five symptoms as major symptoms which include depression, combs, wattle, bluish face region, swollen face region, narrowness of eyes, and balance disorders. Research location is in the Lampung Province, South Sumatera. The researcher reason to choose Lampung Province in South Sumatera on the basis that has a high poultry population. Geographically, Lampung province is located at 103040' to 105050' East Longitude and 6045' - 3045' South latitude, confined with: South Sumatera and Bengkulu on North Side, Sunda Strait on the Side, Java Sea on the East Side, Indonesia Ocean on the West Side. Our approach uses Dempster Shafer theory to combine beliefs in certain hypotheses under conditions of uncertainty and ignorance, and allows quantitative measurement of the belief and plausibility in our identification result. Web Mapping is also used for displaying maps on a screen to visualize the result of the identification process. The result reveal that avian influenza warning system has successfully identified the existence of avian influenza and the maps can be displayed as the visualization.
The Discrete Infinite Logistic Normal Distribution
Paisley, John, Wang, Chong, Blei, David
We present the discrete infinite logistic normal distribution (DILN), a Bayesian nonparametric prior for mixed membership models. DILN is a generalization of the hierarchical Dirichlet process (HDP) that models correlation structure between the weights of the atoms at the group level. We derive a representation of DILN as a normalized collection of gamma-distributed random variables, and study its statistical properties. We consider applications to topic modeling and derive a variational inference algorithm for approximate posterior inference. We study the empirical performance of the DILN topic model on four corpora, comparing performance with the HDP and the correlated topic model (CTM). To deal with large-scale data sets, we also develop an online inference algorithm for DILN and compare with online HDP and online LDA on the Nature magazine, which contains approximately 350,000 articles.