Goto

Collaborating Authors

 Country


Adaptive Choice of Grid and Time in Reinforcement Learning

Neural Information Processing Systems

Consistency problems arise if the discretization needs to be refined, e.g. for more accuracy, application of multi-grid iteration or better starting values for the iteration of the approximate optimal value function. In [7] it was shown, that for diffusion dominated problems, a state to time discretization ratio k/ h of Ch'r, I


Bayesian Robustification for Audio Visual Fusion

Neural Information Processing Systems

Department of Cognitive Science Department of Cognitive Science University of California, San Diego University of California, San Diego La Jolla, CA 92092-0515 La Jolla, CA 92092-0515 Abstract We discuss the problem of catastrophic fusion in multimodal recognition systems. This problem arises in systems that need to fuse different channels in non-stationary environments. Practice shows that when recognition modules within each modality are tested in contexts inconsistent with their assumptions, their influence on the fused product tends to increase, with catastrophic results. We explore a principled solution to this problem based upon Bayesian ideas of competitive models and inference robustification: each sensory channel is provided with simple white-noise context models, and the perceptual hypothesis and context are jointly estimated. Consequently, context deviations are interpreted as changes in white noise contamination strength, automatically adjusting the influence of the module.


Asymptotic Theory for Regularization: One-Dimensional Linear Case

Neural Information Processing Systems

The generalization ability of a neural network can sometimes be improved dramatically by regularization. To analyze the improvement one needs more refined results than the asymptotic distribution of the weight vector. Here we study the simple case of one-dimensional linear regression under quadratic regularization, i.e., ridge regression. We study the random design, misspecified case, where we derive expansions for the optimal regularization parameter and the ensuing improvement. It is possible to construct examples where it is best to use no regularization.


Phase Transitions and the Perceptual Organization of Video Sequences

Neural Information Processing Systems

Estimating motion in scenes containing multiple moving objects remains a difficult problem in computer vision. A promising approach to this problem involves using mixture models, where the motion of each object is a component in the mixture. However, existing methods typically require specifying in advance the number of components in the mixture, i.e. the number of objects in the scene.


Boltzmann Machine Learning Using Mean Field Theory and Linear Response Correction

Neural Information Processing Systems

We present a new approximate learning algorithm for Boltzmann Machines, using a systematic expansion of the Gibbs free energy to second order in the weights. The linear response correction to the correlations is given by the Hessian of the Gibbs free energy. The computational complexity of the algorithm is cubic in the number of neurons. We compare the performance of the exact BM learning algorithm with first order (Weiss) mean field theory and second order (TAP) mean field theory. The learning task consists of a fully connected Ising spin glass model on 10 neurons. We conclude that 1) the method works well for paramagnetic problems 2) the TAP correction gives a significant improvement over the Weiss mean field theory, both for paramagnetic and spin glass problems and 3) that the inclusion of diagonal weights improves the Weiss approximation for paramagnetic problems, but not for spin glass problems.


A Non-Parametric Multi-Scale Statistical Model for Natural Images

Neural Information Processing Systems

The observed distribution of natural images is far from uniform. On the contrary, real images have complex and important structure that can be exploited for image processing, recognition and analysis. There have been many proposed approaches to the principled statistical modeling of images, but each has been limited in either the complexity of the models or the complexity of the images. We present a nonparametric multi-scale statistical model for images that can be used for recognition, image de-noising, and in a "generative mode" to synthesize high quality textures.


Analysis of Drifting Dynamics with Neural Network Hidden Markov Models

Neural Information Processing Systems

We present a method for the analysis of nonstationary time series with multiple operating modes. In particular, it is possible to detect and to model both a switching of the dynamics and a less abrupt, time consuming drift from one mode to another. This is achieved in two steps. First, an unsupervised training method provides prediction experts for the inherent dynamical modes. Then, the trained experts are used in a hidden Markov model that allows to model drifts. An application to physiological wake/sleep data demonstrates that analysis and modeling of real-world time series can be improved when the drift paradigm is taken into account.


Correlates of Attention in a Model of Dynamic Visual Recognition

Neural Information Processing Systems

Given a set of objects in the visual field, how does the the visual system learn to attend to a particular object of interest while ignoring the rest? How are occlusions and background clutter so effortlessly discounted for when recognizing a familiar object? In this paper, we attempt to answer these questions in the context of a Kalman filter-based model of visual recognition that has previously proved useful in explaining certain neurophysiological phenomena such as endstopping and related extra-classical receptive field effects in the visual cortex. By using results from the field of robust statistics, we describe an extension of the Kalman filter model that can handle multiple objects in the visual field. The resulting robust Kalman filter model demonstrates how certain forms of attention can be viewed as an emergent property of the interaction between top-down expectations and bottom-up signals.


A Neural Network Model of Naive Preference and Filial Imprinting in the Domestic Chick

Neural Information Processing Systems

Filial imprinting in domestic chicks is of interest in psychology, biology, and computational modeling because it exemplifies simple, rapid, innately programmed learning which is biased toward learning about some objects. Hom et al. have recently discovered a naive visual preference for heads and necks which develops over the course of the first three days of life. The neurological basis of this predisposition is almost entirely unknown; that of imprinting-related learning is fairly clear. This project is the first model of the predisposition consistent with what is known about learning in imprinting. The model develops the predisposition appropriately, learns to "approach" a training object, and replicates one interaction between the two processes. Future work will replicate more interactions between imprinting and the predisposition in chicks, and analyze why the system works.


Estimating Dependency Structure as a Hidden Variable

Neural Information Processing Systems

This paper introduces a probability model, the mixture of trees that can account for sparse, dynamically changing dependence relationships. We present a family of efficient algorithms that use EM and the Minimum Spanning Tree algorithm to find the ML and MAP mixture of trees for a variety of priors, including the Dirichlet and the MDL priors.