Goto

Collaborating Authors

 Country


LPC(ID): A Sequent Calculus Proof System for Propositional Logic Extended with Inductive Definitions

arXiv.org Artificial Intelligence

The logic FO(ID) uses ideas from the field of logic programming to extend first order logic with non-monotone inductive definitions. Such logic formally extends logic programming, abductive logic programming and datalog, and thus formalizes the view on these formalisms as logics of (generalized) inductive definitions. The goal of this paper is to study a deductive inference method for PC(ID), which is the propositional fragment of FO(ID). We introduce a formal proof system based on the sequent calculus (Gentzen-style deductive system) for this logic. As PC(ID) is an integration of classical propositional logic and propositional inductive definitions, our sequent calculus proof system integrates inference rules for propositional calculus and definitions. We present the soundness and completeness of this proof system with respect to a slightly restricted fragment of PC(ID). We also provide some complexity results for PC(ID). By developing the proof system for PC(ID), it helps us to enhance the understanding of proof-theoretic foundations of FO(ID), and therefore to investigate useful proof systems for FO(ID).


Challenges for Distributional Compositional Semantics

arXiv.org Artificial Intelligence

This paper summarises the current state-of-the art in the study of compositionality in distributional semantics, and major challenges for this area. We single out generalised quantifiers and intensional semantics as areas on which to focus attention for the development of the theory. Once suitable theories have been developed, algorithms will be needed to apply the theory to tasks. Evaluation is a major problem; we single out application to recognising textual entailment and machine translation for this purpose.


Shortest path distance in random k-nearest neighbor graphs

arXiv.org Machine Learning

Consider a weighted or unweighted k-nearest neighbor graph that has been built on n data points drawn randomly according to some density p on R^d. We study the convergence of the shortest path distance in such graphs as the sample size tends to infinity. We prove that for unweighted kNN graphs, this distance converges to an unpleasant distance function on the underlying space whose properties are detrimental to machine learning. We also study the behavior of the shortest path distance in weighted kNN graphs.


An Introduction to Artificial Prediction Markets for Classification

arXiv.org Machine Learning

Prediction markets are used in real life to predict outcomes of interest such as presidential elections. This paper presents a mathematical theory of artificial prediction markets for supervised learning of conditional probability estimators. The artificial prediction market is a novel method for fusing the prediction information of features or trained classifiers, where the fusion result is the contract price on the possible outcomes. The market can be trained online by updating the participants' budgets using training examples. Inspired by the real prediction markets, the equations that govern the market are derived from simple and reasonable assumptions. Efficient numerical algorithms are presented for solving these equations. The obtained artificial prediction market is shown to be a maximum likelihood estimator. It generalizes linear aggregation, existent in boosting and random forest, as well as logistic regression and some kernel methods. Furthermore, the market mechanism allows the aggregation of specialized classifiers that participate only on specific instances. Experimental comparisons show that the artificial prediction markets often outperform random forest and implicit online learning on synthetic data and real UCI datasets. Moreover, an extensive evaluation for pelvic and abdominal lymph node detection in CT data shows that the prediction market improves adaboost's detection rate from 79.6% to 81.2% at 3 false positives/volume.


Forecasting electricity consumption by aggregating specialized experts

arXiv.org Machine Learning

We consider the setting of sequential prediction of arbitrary sequences based on specialized experts. We first provide a review of the relevant literature and present two theoretical contributions: a general analysis of the specialist aggregation rule of Freund et al. (1997) and an adaptation of fixed-share rules of Herbster and Warmuth (1998) in this setting. We then apply these rules to the sequential short-term (one-day-ahead) forecasting of electricity consumption; to do so, we consider two data sets, a Slovakian one and a French one, respectively concerned with hourly and half-hourly predictions. We follow a general methodology to perform the stated empirical studies and detail in particular tuning issues of the learning parameters. The introduced aggregation rules demonstrate an improved accuracy on the data sets at hand; the improvements lie in a reduced mean squared error but also in a more robust behavior with respect to large occasional errors.


Rule Based Expert System for Diagnosis of Neuromuscular Disorders

arXiv.org Artificial Intelligence

In this paper, we discuss the implementation of a rule based expert system for diagnosing neuromuscular diseases. The proposed system is implemented as a rule based expert system in JESS for the diagnosis of Cerebral Palsy, Multiple Sclerosis, Muscular Dystrophy and Parkinson's disease. In the system, the user is presented with a list of questionnaires about the symptoms of the patients based on which the disease of the patient is diagnosed and possible treatment is suggested. The system can aid and support the patients suffering from neuromuscular diseases to get an idea of their disease and possible treatment for the disease.


Generalizing Redundancy in Propositional Logic: Foundations and Hitting Sets Duality

arXiv.org Artificial Intelligence

Detection and elimination of redundant clauses from propositional formulas in Conjunctive Normal Form (CNF) is a fundamental problem with numerous application domains, including AI, and has been the subject of extensive research. Moreover, a number of recent applications motivated various extensions of this problem. For example, unsatisfiable formulas partitioned into disjoint subsets of clauses (so-called groups) often need to be simplified by removing redundant groups, or may contain redundant variables, rather than clauses. In this report we present a generalized theoretical framework of labelled CNF formulas that unifies various extensions of the redundancy detection and removal problem and allows to derive a number of results that subsume and extend previous work. The follow-up reports contain a number of additional theoretical results and algorithms for various computational problems in the context of the proposed framework.


Estimating a Causal Order among Groups of Variables in Linear Models

arXiv.org Machine Learning

The machine learning community has recently devoted much attention to the problem of inferring causal relationships from statistical data. Most of this work has focused on uncovering connections among scalar random variables. We generalize existing methods to apply to collections of multi-dimensional random vectors, focusing on techniques applicable to linear models. The performance of the resulting algorithms is evaluated and compared in simulations, which show that our methods can, in many cases, provide useful information on causal relationships even for relatively small sample sizes.


Nonparametric Edge Detection in Speckled Imagery

arXiv.org Machine Learning

We address the issue of edge detection in Synthetic Aperture Radar imagery. In particular, we propose nonparametric methods for edge detection, and numerically compare them to an alternative method that has been recently proposed in the literature. Our results show that some of the proposed methods display superior results and are computationally simpler than the existing method. An application to real (not simulated) data is presented and discussed.


Keeping greed good: sparse regression under design uncertainty with application to biomass characterization

arXiv.org Machine Learning

In this paper, we consider the classic measurement error regression scenario in which our independent, or design, variables are observed with several sources of additive noise. We will show that our motivating example's replicated measurements on both the design and dependent variables may be leveraged to enhance a sparse regression algorithm. Specifically, we estimate the variance and use it to scale our design variables. We demonstrate the efficacy of scaling from several points of view and validate it empirically with a biomass characterization data set using two of the most widely used sparse algorithms: least angle regression (LARS) and the Dantzig selector (DS).