Goto

Collaborating Authors

 Country


From Qualitative to Quantitative Probabilistic Networks

arXiv.org Artificial Intelligence

Quantification is well known to be a major obstacle in the construction of a probabilistic network, especially when relying on human experts for this purpose. The construction of a qualitative probabilistic network has been proposed as an initial step in a network s quantification, since the qualitative network can be used TO gain preliminary insight IN the projected networks reasoning behaviour. We extend on this idea and present a new type of network in which both signs and numbers are specified; we further present an associated algorithm for probabilistic inference. Building upon these semi-qualitative networks, a probabilistic network can be quantified and studied in a stepwise manner. As a result, modelling inadequacies can be detected and amended at an early stage in the quantification process.


Unconstrained Influence Diagrams

arXiv.org Artificial Intelligence

We extend the language of influence diagrams to cope with decision scenarios where the order of decisions and observations is not determined. As the ordering of decisions is dependent on the evidence, a step-strategy of such a scenario is a sequence of dependent choices of the next action. A strategy is a step-strategy together with selection functions for decision actions. The structure of a step-strategy can be represented as a DAG with nodes labeled with action variables. We introduce the concept of GS-DAG: a DAG incorporating an optimal step-strategy for any instantiation. We give a method for constructing GS-DAGs, and we show how to use a GS-DAG for determining an optimal strategy. Finally we discuss how analysis of relevant past can be used to reduce the size of the GS-DAG.


Loopy Belief Propogation and Gibbs Measures

arXiv.org Artificial Intelligence

We address the question of convergence in the loopy belief propagation (LBP) algorithm. Specifically, we relate convergence of LBP to the existence of a weak limit for a sequence of Gibbs measures defined on the LBP s associated computation tree.Using tools FROM the theory OF Gibbs measures we develop easily testable sufficient conditions FOR convergence.The failure OF convergence OF LBP implies the existence OF multiple phases FOR the associated Gibbs specification.These results give new insight INTO the mechanics OF the algorithm.


Value Function Approximation in Zero-Sum Markov Games

arXiv.org Artificial Intelligence

This paper investigates value function approximation in the context of zero-sum Markov games, which can be viewed as a generalization of the Markov decision process (MDP) framework to the two-agent case. We generalize error bounds from MDPs to Markov games and describe generalizations of reinforcement learning algorithms to Markov games. We present a generalization of the optimal stopping problem to a two-player simultaneous move Markov game. For this special problem, we provide stronger bounds and can guarantee convergence for LSTD and temporal difference learning with linear value function approximation. We demonstrate the viability of value function approximation for Markov games by using the Least squares policy iteration (LSPI) algorithm to learn good policies for a soccer domain and a flow control problem.


Decision Principles to justify Carnap's Updating Method and to Suggest Corrections of Probability Judgments (Invited Talks)

arXiv.org Artificial Intelligence

This paper uses decision-theoretic principles to obtain new insights into the assessment and updating of probabilities. First, a new foundation of Bayesianism is given. It does not require infinite atomless uncertainties as did Savage s classical result, AND can therefore be applied TO ANY finite Bayesian network.It neither requires linear utility AS did de Finetti s classical result, AND r ntherefore allows FOR the empirically AND normatively desirable risk r naversion.Finally, BY identifying AND fixing utility IN an elementary r nmanner, our result can readily be applied TO identify methods OF r nprobability updating.Thus, a decision - theoretic foundation IS given r nto the computationally efficient method OF inductive reasoning r ndeveloped BY Rudolf Carnap.Finally, recent empirical findings ON r nprobability assessments are discussed.It leads TO suggestions FOR r ncorrecting biases IN probability assessments, AND FOR an alternative r nto the Dempster - Shafer belief functions that avoids the reduction TO r ndegeneracy after multiple updatings.r n


Generalized Instrumental Variables

arXiv.org Artificial Intelligence

This paper concerns the assessment of direct causal effects from a combination of: (i) non-experimental data, and (ii) qualitative domain knowledge. Domain knowledge is encoded in the form of a directed acyclic graph (DAG), in which all interactions are assumed linear, and some variables are presumed to be unobserved. We provide a generalization of the well-known method of Instrumental Variables, which allows its application to models with few conditional independeces.


Real-Time Inference with Large-Scale Temporal Bayes Nets

arXiv.org Artificial Intelligence

An increasing number of applications require real-time reasoning under uncertainty with streaming input. The temporal (dynamic) Bayes net formalism provides a powerful representational framework for such applications. However, existing exact inference algorithms for dynamic Bayes nets do not scale to the size of models required for real world applications which often contain hundreds or even thousands of variables for each time slice. In addition, existing algorithms were not developed with real-time processing in mind. We have developed a new computational approach to support real-time exact inference in large temporal Bayes nets. Our approach tackles scalability by recognizing that the complexity of the inference depends on the number of interface nodes between time slices and by exploiting the distinction between static and dynamic nodes in order to reduce the number of interface nodes and to factorize their joint probability distribution. We approach the real-time issue by organizing temporal Bayes nets into static representations, and then using the symbolic probabilistic inference algorithm to derive analytic expressions for the static representations. The parts of these expressions that do not change at each time step are pre-computed. The remaining parts are compiled into efficient procedural code so that the memory and CPU resources required by the inference are small and fixed.


Iterative Join-Graph Propagation

arXiv.org Artificial Intelligence

The paper presents an iterative version of join-tree clustering that applies the message passing of join-tree clustering algorithm to join-graphs rather than to join-trees, iteratively. It is inspired by the success of Pearl's belief propagation algorithm as an iterative approximation scheme on one hand, and by a recently introduced mini-clustering i. success as an anytime approximation method, on the other. The proposed Iterative Join-graph Propagation IJGP belongs to the class of generalized belief propagation methods, recently proposed using analogy with algorithms in statistical physics. Empirical evaluation of this approach on a number of problem classes demonstrates that even the most time-efficient variant is almost always superior to IBP and MC i, and is sometimes more accurate by as much as several orders of magnitude.


Exploiting Functional Dependence in Bayesian Network Inference

arXiv.org Artificial Intelligence

We propose an efficient method for Bayesian network inference in models with functional dependence. We generalize the multiplicative factorization method originally designed by Takikawa and D Ambrosio(1999) FOR models WITH independence OF causal influence.Using a hidden variable, we transform a probability potential INTO a product OF two - dimensional potentials.The multiplicative factorization yields more efficient inference. FOR example, IN junction tree propagation it helps TO avoid large cliques. IN ORDER TO keep potentials small, the number OF states OF the hidden variable should be minimized.We transform this problem INTO a combinatorial problem OF minimal base IN a particular space.We present an example OF a computerized adaptive test, IN which the factorization method IS significantly more efficient than previous inference methods.


Anytime State-Based Solution Methods for Decision Processes with non-Markovian Rewards

arXiv.org Artificial Intelligence

A popular approach to solving a decision process with non-Markovian rewards (NMRDP) is to exploit a compact representation of the reward function to automatically translate the NMRDP into an equivalent Markov decision process (MDP) amenable to our favorite MDP solution method. The contribution of this paper is a representation of non-Markovian reward functions and a translation into MDP aimed at making the best possible use of state-based anytime algorithms as the solution method. By explicitly constructing and exploring only parts of the state space, these algorithms are able to trade computation time for policy quality, and have proven quite effective in dealing with large MDPs. Our representation extends future linear temporal logic (FLTL) to express rewards. Our translation has the effect of embedding model-checking in the solution method. It results in an MDP of the minimal size achievable without stepping outside the anytime framework, and consequently in better policies by the deadline.