Country
Cobot: A Social Reinforcement Learning Agent
Jr., Charles Lee Isbell, Shelton, Christian R.
We report on the use of reinforcement learning with Cobot, a software agent residing in the well-known online community LambdaMOO. Our initial work on Cobot (Isbell et al.2000) provided him with the ability to collect social statistics and report them to users. Here we describe an application of RL allowing Cobot to take proactive actions in this complex social environment, and adapt behavior from multiple sources of human reward. After 5 months of training, and 3171 reward and punishment events from 254 different LambdaMOO users, Cobot learned nontrivial preferences for a number of users, modifing his behavior based on his current state. Here we describe LambdaMOO and the state and action spaces of Cobot, and report the statistical results of the learning experiment.
Grouping and dimensionality reduction by locally linear embedding
Polito, Marzia, Perona, Pietro
Locally Linear Embedding (LLE) is an elegant nonlinear dimensionality-reduction technique recently introduced by Roweis and Saul [2]. It fails when the data is divided into separate groups. We study a variant of LLE that can simultaneously group the data and calculate local embedding of each group. An estimate for the upper bound on the intrinsic dimension of the data set is obtained automatically. 1 Introduction Consider a collection of N data points Xi E ]RD.
A theory of neural integration in the head-direction system
Hahnloser, Richard, Xie, Xiaohui, Seung, H. S.
Integration in the head-direction system is a computation by which horizontal angular head velocity signals from the vestibular nuclei are integrated to yield a neural representation of head direction. In the thalamus, the postsubiculum and the mammillary nuclei, the head-direction representation has the form of a place code: neurons have a preferred head direction in which their firing is maximal [Blair and Sharp, 1995, Blair et al., 1998,?]. Integration is a difficult computation, given that head-velocities can vary over a large range. Previous models of the head-direction system relied on the assumption that the integration is achieved in a firing-rate-based attractor network with a ring structure. In order to correctly integrate head-velocity signals during high-speed head rotations, very fast synaptic dynamics had to be assumed. Here we address the question whether integration in the head-direction system is possible with slow synapses, for example excitatory NMDA and inhibitory GABA(B) type synapses. For neural networks with such slow synapses, rate-based dynamics are a good approximation of spiking neurons [Ermentrout, 1994]. We find that correct integration during high-speed head rotations imposes strong constraints on possible network architectures.
Information-Geometric Decomposition in Spike Analysis
Nakahara, Hiroyuki, Amari, Shun-ichi
We present an information-geometric measure to systematically investigate neuronal firing patterns, taking account not only of the second-order but also of higher-order interactions. We begin with the case of two neurons for illustration and show how to test whether or not any pairwise correlation in one period is significantly different from that in the other period. In order to test such a hypothesis of different firing rates, the correlation term needs to be singled out'orthogonally' to the firing rates, where the null hypothesis might not be of independent firing. This method is also shown to directly associate neural firing with behavior via their mutual information, which is decomposed into two types of information, conveyed by mean firing rate and coincident firing, respectively. Then, we show that these results, using the'orthogonal' decomposition, are naturally extended to the case of three neurons and n neurons in general. 1 Introduction Based on the theory of hierarchical structure and related invariant decomposition of interactions by information geometry [3], the present paper briefly summarizes methods useful for systematically analyzing a population of neural firing [9].
Kernel Logistic Regression and the Import Vector Machine
The support vector machine (SVM) is known for its good performance in binary classification, but its extension to multi-class classification is still an ongoing research issue. In this paper, we propose a new approach for classification, called the import vector machine (IVM), which is built on kernel logistic regression (KLR). We show that the IVM not only performs as well as the SVM in binary classification, but also can naturally be generalized to the multi-class case. Furthermore, the IVM provides an estimate of the underlying probability. Similar to the "support points" of the SVM, the IVM model uses only a fraction of the training data to index kernel basis functions, typically a much smaller fraction than the SVM. This gives the IVM a computational advantage over the SVM, especially when the size of the training data set is large.
Speech Recognition using SVMs
An important issue in applying SVMs to speech recognition is the ability to classify variable length sequences. This paper presents extensions to a standard scheme for handling this variable length data, the Fisher score. A more useful mapping is introduced based on the likelihood-ratio. The score-space defined by this mapping avoids some limitations of the Fisher score. Class-conditional generative models are directly incorporated into the definition of the score-space.
Prodding the ROC Curve: Constrained Optimization of Classifier Performance
Mozer, Michael C., Dodier, Robert, Colagrosso, Michael D., Guerra-Salcedo, Cesar, Wolniewicz, Richard
When designing a two-alternative classifier, one ordinarily aims to maximize the classifier's ability to discriminate between members of the two classes. We describe a situation in a real-world business application of machine-learning prediction in which an additional constraint is placed on the nature of the solution: that the classifier achieve a specified correct acceptance or correct rejection rate (i.e., that it achieve a fixed accuracy on members of one class or the other). Our domain is predicting churn in the telecommunications industry. Churn refers to customers who switch from one service provider to another. We propose four algorithms for training a classifier subject to this domain constraint, and present results showing that each algorithm yields a reliable improvement in performance.
Information Geometrical Framework for Analyzing Belief Propagation Decoder
Ikeda, Shiro, Tanaka, Toshiyuki, Amari, Shun-ichi
The mystery of belief propagation (BP) decoder, especially of the turbo decoding, is studied from information geometrical viewpoint. The loopy belief network (BN) of turbo codes makes it difficult to obtain the true "belief" by BP, and the characteristics of the algorithm and its equilibrium are not clearly understood. Our study gives an intuitive understanding of the mechanism, and a new framework for the analysis. Based on the framework, we reveal basic properties of the turbo decoding.
Probabilistic Inference of Hand Motion from Neural Activity in Motor Cortex
Gao, Yun, Black, Michael J., Bienenstock, Elie, Shoham, Shy, Donoghue, John P.
Statistical learning and probabilistic inference techniques are used to infer the hand position of a subject from multi-electrode recordings of neural activity in motor cortex. First, an array of electrodes provides training data of neural firing conditioned on hand kinematics. We learn a nonparametric representation of this firing activity using a Bayesian model and rigorously compare it with previous models using cross-validation. Second, we infer a posterior probability distribution over hand motion conditioned on a sequence of neural test data using Bayesian inference. The learned firing models of multiple cells are used to define a non-Gaussian likelihood term which is combined with a prior probability for the kinematics. A particle filtering method is used to represent, update, and propagate the posterior distribution over time. The approach is compared with traditional linear filtering methods; the results suggest that it may be appropriate for neural prosthetic applications.
Blind Source Separation via Multinode Sparse Representation
Zibulevsky, Michael, Kisilev, Pavel, Zeevi, Yehoshua Y., Pearlmutter, Barak A.
We consider a problem of blind source separation from a set of instantaneous linear mixtures, where the mixing matrix is unknown. It was discovered recently, that exploiting the sparsity of sources in an appropriate representation according to some signal dictionary, dramatically improves the quality of separation. In this work we use the property of multi scale transforms, such as wavelet or wavelet packets, to decompose signals into sets of local features with various degrees of sparsity. We use this intrinsic property for selecting the best (most sparse) subsets of features for further separation. The performance of the algorithm is verified on noise-free and noisy data. Experiments with simulated signals, musical sounds and images demonstrate significant improvement of separation quality over previously reported results.