Goto

Collaborating Authors

 Country


Tractable Operations for Arithmetic Circuits of Probabilistic Models

Neural Information Processing Systems

We consider tractable representations of probability distributions and the polytime operations they support. In particular, we consider a recently proposed arithmetic circuit representation, the Probabilistic Sentential Decision Diagram (PSDD). We show that PSDDs support a polytime multiplication operator, while they do not support a polytime operator for summing-out variables. A polytime multiplication operator makes PSDDs suitable for a broader class of applications compared to classes of arithmetic circuits that do not support multiplication. As one example, we show that PSDD multiplication leads to a very simple but effective compilation algorithm for probabilistic graphical models: represent each model factor as a PSDD, and then multiply them.


Exploring Embodied Emotion Through A Large-Scale Egocentric Video Dataset

Neural Information Processing Systems

Understanding human emotions is fundamental to enhancing human-computer interaction, especially for embodied agents that mimic human behavior. Traditional emotion analysis often takes a third-person perspective, limiting the ability of agents to interact naturally and empathetically.


Deep Support Vectors

Neural Information Processing Systems

Deep learning has achieved tremendous success. However, unlike SVMs, which provide direct decision criteria and can be trained with a small dataset, it still has significant weaknesses due to its requirement for massive datasets during training and the black-box characteristics on decision criteria.


Latent Diffusion for Neural Spiking Data Auguste Schulz 1 * Julius Vetter 1 Felix Pei

Neural Information Processing Systems

Modern datasets in neuroscience enable unprecedented inquiries into the relationship between complex behaviors and the activity of many simultaneously recorded neurons. While latent variable models can successfully extract low-dimensional embeddings from such recordings, using them to generate realistic spiking data, especially in a behavior-dependent manner, still poses a challenge. Here, we present Latent Diffusion for Neural Spiking data (LDNS), a diffusion-based generative model with a low-dimensional latent space: LDNS employs an autoencoder with structured state-space (S4) layers to project discrete high-dimensional spiking data into continuous time-aligned latents. On these inferred latents, we train expressive (conditional) diffusion models, enabling us to sample neural activity with realistic single-neuron and population spiking statistics.


Data Acquisition via Experimental Design for Data Markets

Neural Information Processing Systems

The acquisition of training data is crucial for machine learning applications. Data markets can increase the supply of data, particularly in data-scarce domains such as healthcare, by incentivizing potential data providers to join the market. A major challenge for a data buyer in such a market is choosing the most valuable data points from a data seller. Unlike prior work in data valuation, which assumes centralized data access, we propose a federated approach to the data acquisition problem that is inspired by linear experimental design. Our proposed data acquisition method achieves lower prediction error without requiring labeled validation data and can be optimized in a fast and federated procedure. The key insight of our work is that a method that directly estimates the benefit of acquiring data for test set prediction is particularly compatible with a decentralized market setting.


Deep Bayesian Active Learning for Preference Modeling in Large Language Models Alessandro Abate 2 Yarin Gal

Neural Information Processing Systems

Leveraging human preferences for steering the behavior of Large Language Models (LLMs) has demonstrated notable success in recent years. Nonetheless, data selection and labeling are still a bottleneck for these systems, particularly at large scale. Hence, selecting the most informative points for acquiring human feedback may considerably reduce the cost of preference labeling and unleash the further development of LLMs. Bayesian Active Learning provides a principled framework for addressing this challenge and has demonstrated remarkable success in diverse settings. However, previous attempts to employ it for Preference Modeling did not meet such expectations. In this work, we identify that naive epistemic uncertainty estimation leads to the acquisition of redundant samples. We address this by proposing the Bayesian Active Learner for Preference Modeling (BAL-PM), a novel stochastic acquisition policy that not only targets points of high epistemic uncertainty according to the preference model but also seeks to maximize the entropy of the acquired prompt distribution in the feature space spanned by the employed LLM. Notably, our experiments demonstrate that BAL-PM requires 33% to 68% fewer preference labels in two popular human preference datasets and exceeds previous stochastic Bayesian acquisition policies.


Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors 1 Mansi Phute

Neural Information Processing Systems

Text-to-image diffusion models have impactful applications in art, design, and entertainment, yet these technologies also pose significant risks by enabling the creation and dissemination of misinformation. Although recent advancements have produced AI-generated image detectors that claim robustness against various augmentations, their true effectiveness remains uncertain. Do these detectors reliably identify images with different levels of augmentation? Are they biased toward specific scenes or data distributions?


A Powerful Generative Model Using Random Weights for the Deep Image Representation

Neural Information Processing Systems

To what extent is the success of deep visualization due to the training? Could we do deep visualization using untrained, random weight networks? To address this issue, we explore new and powerful generative models for three popular deep visualization tasks using untrained, random weight convolutional neural networks. First we invert representations in feature spaces and reconstruct images from white noise inputs. The reconstruction quality is statistically higher than that of the same method applied on well trained networks with the same architecture.


Exploiting Tradeoffs for Exact Recovery in Heterogeneous Stochastic Block Models

Neural Information Processing Systems

The Stochastic Block Model (SBM) is a widely used random graph model for networks with communities. Despite the recent burst of interest in community detection under the SBM from statistical and computational points of view, there are still gaps in understanding the fundamental limits of recovery. In this paper, we consider the SBM in its full generality, where there is no restriction on the number and sizes of communities or how they grow with the number of nodes, as well as on the connectivity probabilities inside or across communities. For such stochastic block models, we provide guarantees for exact recovery via a semidefinite program as well as upper and lower bounds on SBM parameters for exact recoverability. Our results exploit the tradeoffs among the various parameters of heterogenous SBM and provide recovery guarantees for many new interesting SBM configurations.


Efficient Multi-Task Reinforcement Learning with Cross-Task Policy Guidance

Neural Information Processing Systems

Multi-task reinforcement learning endeavors to efficiently leverage shared information across various tasks, facilitating the simultaneous learning of multiple tasks. Existing approaches primarily focus on parameter sharing with carefully designed network structures or tailored optimization procedures. However, they overlook a direct and complementary way to exploit cross-task similarities: the control policies of tasks already proficient in some skills can provide explicit guidance for unmastered tasks to accelerate skills acquisition. To this end, we present a novel framework called Cross-Task Policy Guidance (CTPG), which trains a guide policy for each task to select the behavior policy interacting with the environment from all tasks' control policies, generating better training trajectories. In addition, we propose two gating mechanisms to improve the learning efficiency of CTPG: one gate filters out control policies that are not beneficial for guidance, while the other gate blocks tasks that do not necessitate guidance. CTPG is a general framework adaptable to existing parameter sharing approaches. Empirical evaluations demonstrate that incorporating CTPG with these approaches significantly enhances performance in manipulation and locomotion benchmarks.