Country
Context and Geometry Aware Voxel Transformer for Semantic Scene Completion
Vision-based Semantic Scene Completion (SSC) has gained much attention due to its widespread applications in various 3D perception tasks. Existing sparseto-dense approaches typically employ shared context-independent queries across various input images, which fails to capture distinctions among them as the focal regions of different inputs vary and may result in undirected feature aggregation of cross-attention. Additionally, the absence of depth information may lead to points projected onto the image plane sharing the same 2D position or similar sampling points in the feature map, resulting in depth ambiguity. In this paper, we present a novel context and geometry aware voxel transformer. It utilizes a context aware query generator to initialize context-dependent queries tailored to individual input images, effectively capturing their unique characteristics and aggregating information within the region of interest. Furthermore, it extend deformable crossattention from 2D to 3D pixel space, enabling the differentiation of points with similar image coordinates based on their depth coordinates.
Efficient Adversarial Training in LLMs with Continuous Attacks
Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails. In many domains, adversarial training has proven to be one of the most promising methods to reliably improve robustness against such attacks. Yet, in the context of LLMs, current methods for adversarial training are hindered by the high computational costs required to perform discrete adversarial attacks at each training iteration. We address this problem by instead calculating adversarial attacks in the continuous embedding space of the LLM, which is orders of magnitudes more efficient. We propose a fast adversarial training algorithm (CAT) composed of two losses: the first makes the model robust on continuous embedding attacks computed on an adversarial behaviour dataset; the second ensures the usefulness of the final model by fine-tuning on utility data. Moreover, we introduce CAPO, an adversarial variant of IPO that does not require utility data for adversarially robust alignment. Our empirical evaluation on five models from different families (Gemma, Phi3, Mistral, Zephyr, Llama2) and at different scales (2B, 3.8B, 7B) shows that both algorithms substantially enhance LLM robustness against discrete attacks (GCG, AutoDAN, PAIR), while maintaining utility. Our results demonstrate that robustness to continuous perturbations can extrapolate to discrete threat models. Thereby, we present a path toward scalable adversarial training algorithms for robustly aligning LLMs.
HelpSteer2: Open-source dataset for training top-performing reward models
High-quality preference datasets are essential for training reward models that can effectively guide large language models (LLMs) in generating high-quality responses aligned with human preferences. As LLMs become stronger and better aligned, permissively licensed preference datasets, such as Open Assistant, HH-RLHF, and HelpSteer need to be updated to remain effective for reward modeling. Methods that distil preference data from proprietary LLMs such as GPT-4 have restrictions on commercial usage imposed by model providers. To improve upon both generated responses and attribute labeling quality, we release HelpSteer2, a permissively licensed preference dataset (CC-BY-4.0). Using a powerful Nemotron-4-340B base model trained on HelpSteer2, we are able to achieve the SOTA score (92.0%) on Reward-Bench's primary dataset, outperforming currently listed open and proprietary models, as of June 12th, 2024. Notably, HelpSteer2 consists of only ten thousand response pairs, an order of magnitude fewer than existing preference datasets (e.g., HH-RLHF), which makes it highly efficient for training reward models. Our extensive experiments demonstrate that reward models trained with HelpSteer2 are effective in aligning LLMs. Additionally, we propose SteerLM 2.0, a model alignment approach that can effectively make use of the rich multiattribute score predicted by our reward models.
SciInstruct: a Self-Reflective Instruction Annotated Dataset for Training Scientific Language Models Dan Zhang
Large Language Models (LLMs) have shown promise in assisting scientific discovery. However, such applications are currently limited by LLMs' deficiencies in understanding intricate scientific concepts, deriving symbolic equations, and solving advanced numerical calculations. To bridge these gaps, we introduce SciInstruct, a suite of scientific instructions for training scientific language models capable of college-level scientific reasoning. Central to our approach is a novel self-reflective instruction annotation framework to address the data scarcity challenge in the science domain. This framework leverages existing LLMs to generate step-by-step reasoning for unlabelled scientific questions, followed by a process of self-reflective critic-and-revise.
Sim2Real-Fire: A Multi-modal Simulation Dataset for Forecast and Backtracking of Real-world Forest Fire Guohui Li
The latest research on wildfire forecast and backtracking has adopted AI models, which require a large amount of data from wildfire scenarios to capture fire spread patterns. This paper explores using cost-effective simulated wildfire scenarios to train AI models and apply them to the analysis of real-world wildfire. This solution requires AI models to minimize the Sim2Real gap, a brand-new topic in the fire spread analysis research community. To investigate the possibility of minimizing the Sim2Real gap, we collect the Sim2Real-Fire dataset that contains 1M simulated scenarios with multi-modal environmental information for training AI models. We prepare 1K real-world wildfire scenarios for testing the AI models. We also propose a deep transformer, S2R-FireTr, which excels in considering the multimodal environmental information for forecasting and backtracking the wildfire.
Certified Robustness for Deep Equilibrium Models via Serialized Random Smoothing
Implicit models such as Deep Equilibrium Models (DEQs) have emerged as promising alternative approaches for building deep neural networks. Their certified robustness has gained increasing research attention due to security concerns. Existing certified defenses for DEQs employing deterministic certification methods such as interval bound propagation and Lipschitz-bounds can not certify on large-scale datasets. Besides, they are also restricted to specific forms of DEQs. In this paper, we provide the first randomized smoothing certified defense for DEQs to solve these limitations. Our study reveals that simply applying randomized smoothing to certify DEQs provides certified robustness generalized to large-scale datasets but incurs extremely expensive computation costs. To reduce computational redundancy, we propose a novel Serialized Randomized Smoothing (SRS) approach that leverages historical information. Additionally, we derive a new certified radius estimation for SRS to theoretically ensure the correctness of our algorithm. Extensive experiments and ablation studies on image recognition demonstrate that our algorithm can significantly accelerate the certification of DEQs by up to 7x almost without sacrificing the certified accuracy.
Causal Contrastive Learning for Counterfactual Regression Over Time
Estimating treatment effects over time holds significance in various domains, including precision medicine, epidemiology, economy, and marketing. This paper introduces a unique approach to counterfactual regression over time, emphasizing long-term predictions. Distinguishing itself from existing models like Causal Transformer, our approach highlights the efficacy of employing RNNs for long-term forecasting, complemented by Contrastive Predictive Coding (CPC) and Information Maximization (InfoMax). Emphasizing efficiency, we avoid the need for computationally expensive transformers.
KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization Coleman Hooper 1 Sehoon Kim 1 Michael W. Mahoney
LLMs are seeing growing use for applications which require large context windows, and with these large context windows KV cache activations surface as the dominant contributor to memory consumption during inference. Quantization is a promising approach for compressing KV cache activations; however, existing solutions fail to represent activations accurately in sub-4-bit precision. Our work, KVQuant, facilitates low precision KV cache quantization by incorporating several novel methods: (i) Per-Channel Key Quantization, where we adjust the dimension along which we quantize the Key activations to better match the distribution; (ii) Pre-RoPE Key Quantization, where we quantize Key activations before the rotary positional embedding to mitigate its impact on quantization; (iii) Non-Uniform KV Cache Quantization, where we derive per-layer sensitivity-weighted non-uniform datatypes that better represent the distributions; and (iv) Per-Vector Dense-and-Sparse Quantization, where we isolate outliers separately for each vector to minimize skews in quantization ranges. By applying our method to the LLaMA, Llama-2, Llama-3, and Mistral models, we achieve < 0.1 perplexity degradation with 3-bit quantization on both Wikitext-2 and C4, outperforming existing approaches. Our method enables serving LLaMA-7B with a context length of up to 1 million on a single A100-80GB GPU and up to 10 million on an 8-GPU system. We develop custom CUDA kernels for KVQuant, showing that we can achieve up to 1.7 speedups, compared to baseline fp16 matrix-vector multiplications, for the LLaMA-7B model.
Open LLMs are Necessary for Current Private Adaptations and Outperform their Closed Alternatives
While open Large Language Models (LLMs) have made significant progress, they still fall short of matching the performance of their closed, proprietary counterparts, making the latter attractive even for the use on highly private data. Recently, various new methods have been proposed to adapt closed LLMs to private data without leaking private information to third parties and/or the LLM provider. In this work, we analyze the privacy protection and performance of the four most recent methods for private adaptation of closed LLMs. By examining their threat models and thoroughly comparing their performance under different privacy levels according to differential privacy (DP), various LLM architectures, and multiple datasets for classification and generation tasks, we find that: (1) all the methods leak query data, i.e., the (potentially sensitive) user data that is queried at inference time, to the LLM provider, (2) three out of four methods also leak large fractions of private training data to the LLM provider while the method that protects private data requires a local open LLM, (3) all the methods exhibit lower performance compared to three private gradient-based adaptation methods for local open LLMs, and (4) the private adaptation methods for closed LLMs incur higher monetary training and query costs than running the alternative methods on local open LLMs. This yields the conclusion that, to achieve truly privacy-preserving LLM adaptations that yield high performance and more privacy at lower costs, taking into account current methods and models, one should use open LLMs.