Not enough data to create a plot.
Try a different view from the menu above.
Country
PDDL2.1 - The Art of the Possible? Commentary on Fox and Long
PDDL2.1 was designed to push the envelope of what planning algorithms can do, and it has succeeded. It adds two important features: durative actions,which take time (and may have continuous effects); and objective functions for measuring the quality of plans. The concept of durative actions is flawed; and the treatment of their semantics reveals too strong an attachment to the way many contemporary planners work. Future PDDL innovators should focus on producing a clean semantics for additions to the language, and let planner implementers worry about coupling their algorithms to problems expressed in the latest version of the language.
Distributed Reasoning in a Peer-to-Peer Setting: Application to the Semantic Web
Adjiman, P., Chatalic, P., Goasdoue, F., Rousset, M. C., Simon, L.
In a peer-to-peer inference system, each peer can reason locally but can also solicit some of its acquaintances, which are peers sharing part of its vocabulary. In this paper, we consider peer-to-peer inference systems in which the local theory of each peer is a set of propositional clauses defined upon a local vocabulary. An important characteristic of peer-to-peer inference systems is that the global theory (the union of all peer theories) is not known (as opposed to partition-based reasoning systems). The main contribution of this paper is to provide the first consequence finding algorithm in a peer-to-peer setting: DeCA. It is anytime and computes consequences gradually from the solicited peer to peers that are more and more distant. We exhibit a sufficient condition on the acquaintance graph of the peer-to-peer inference system for guaranteeing the completeness of this algorithm. Another important contribution is to apply this general distributed reasoning setting to the setting of the Semantic Web through the Somewhere semantic peer-to-peer data management system. The last contribution of this paper is to provide an experimental analysis of the scalability of the peer-to-peer infrastructure that we propose, on large networks of 1000 peers.
Binary Encodings of Non-binary Constraint Satisfaction Problems: Algorithms and Experimental Results
A non-binary Constraint Satisfaction Problem (CSP) can be solved directly using extended versions of binary techniques. Alternatively, the non-binary problem can be translated into an equivalent binary one. In this case, it is generally accepted that the translated problem can be solved by applying well-established techniques for binary CSPs. In this paper we evaluate the applicability of the latter approach. We demonstrate that the use of standard techniques for binary CSPs in the encodings of non-binary problems is problematic and results in models that are very rarely competitive with the non-binary representation. To overcome this, we propose specialized arc consistency and search algorithms for binary encodings, and we evaluate them theoretically and empirically. We consider three binary representations; the hidden variable encoding, the dual encoding, and the double encoding. Theoretical and empirical results show that, for certain classes of non-binary constraints, binary encodings are a competitive option, and in many cases, a better one than the non-binary representation.
Higher-Order Markov Tag-Topic Models for Tagged Documents and Images
Zeng, Jia, Feng, Wei, Cheung, William K., Li, Chun-Hung
This paper studies the topic modeling problem of tagged documents and images. Higher-order relations among tagged documents and images are major and ubiquitous characteristics, and play positive roles in extracting reliable and interpretable topics. In this paper, we propose the tag-topic models (TTM) to depict such higher-order topic structural dependencies within the Markov random field (MRF) framework. First, we use the novel factor graph representation of latent Dirichlet allocation (LDA)-based topic models from the MRF perspective, and present an efficient loopy belief propagation (BP) algorithm for approximate inference and parameter estimation. Second, we propose the factor hypergraph representation of TTM, and focus on both pairwise and higher-order relation modeling among tagged documents and images. Efficient loopy BP algorithm is developed to learn TTM, which encourages the topic labeling smoothness among tagged documents and images. Extensive experimental results confirm the incorporation of higher-order relations to be effective in enhancing the overall topic modeling performance, when compared with current state-of-the-art topic models, in many text and image mining tasks of broad interests such as word and link prediction, document classification, and tag recommendation.
Towards Optimal Learning of Chain Graphs
In this paper, we extend Meek's conjecture (Meek 1997) from directed and acyclic graphs to chain graphs, and prove that the extended conjecture is true. Specifically, we prove that if a chain graph H is an independence map of the independence model induced by another chain graph G, then (i) G can be transformed into H by a sequence of directed and undirected edge additions and feasible splits and mergings, and (ii) after each operation in the sequence H remains an independence map of the independence model induced by G. Our result has the same important consequence for learning chain graphs from data as the proof of Meek's conjecture in (Chickering 2002) had for learning Bayesian networks from data: It makes it possible to develop efficient and asymptotically correct learning algorithms under mild assumptions.
Minimum Probability Flow Learning
Sohl-Dickstein, Jascha, Battaglino, Peter, DeWeese, Michael R.
Fitting probabilistic models to data is often difficult, due to the general intractability of the partition function and its derivatives. Here we propose a new parameter estimation technique that does not require computing an intractable normalization factor or sampling from the equilibrium distribution of the model. This is achieved by establishing dynamics that would transform the observed data distribution into the model distribution, and then setting as the objective the minimization of the KL divergence between the data distribution and the distribution produced by running the dynamics for an infinitesimal time. Score matching, minimum velocity learning, and certain forms of contrastive divergence are shown to be special cases of this learning technique. We demonstrate parameter estimation in Ising models, deep belief networks and an independent component analysis model of natural scenes. In the Ising model case, current state of the art techniques are outperformed by at least an order of magnitude in learning time, with lower error in recovered coupling parameters.
Proof System for Plan Verification under 0-Approximation Semantics
In this paper a proof system is developed for plan verification problems $\{X\}c\{Y\}$ and $\{X\}c\{KW p\}$ under 0-approximation semantics for ${\mathcal A}_K$. Here, for a plan $c$, two sets $X,Y$ of fluent literals, and a literal $p$, $\{X\}c\{Y\}$ (resp. $\{X\}c\{KW p\}$) means that all literals of $Y$ become true (resp. $p$ becomes known) after executing $c$ in any initial state in which all literals in $X$ are true.Then, soundness and completeness are proved. The proof system allows verifying plans and generating plans as well.
Continuous Strategy Replicator Dynamics for Multi--Agent Learning
The problem of multi-agent learning and adaptation has attracted a great deal of attention in recent years. It has been suggested that the dynamics of multi agent learning can be studied using replicator equations from population biology. Most existing studies so far have been limited to discrete strategy spaces with a small number of available actions. In many cases, however, the choices available to agents are better characterized by continuous spectra. This paper suggests a generalization of the replicator framework that allows to study the adaptive dynamics of Q-learning agents with continuous strategy spaces. Instead of probability vectors, agents strategies are now characterized by probability measures over continuous variables. As a result, the ordinary differential equations for the discrete case are replaced by a system of coupled integral--differential replicator equations that describe the mutual evolution of individual agent strategies. We derive a set of functional equations describing the steady state of the replicator dynamics, examine their solutions for several two-player games, and confirm our analytical results using simulations.
Sparse Choice Models
Farias, Vivek F., Jagabathula, Srikanth, Shah, Devavrat
Choice models, which capture popular preferences over objects of interest, play a key role in making decisions whose eventual outcome is impacted by human choice behavior. In most scenarios, the choice model, which can effectively be viewed as a distribution over permutations, must be learned from observed data. The observed data, in turn, may frequently be viewed as (partial, noisy) information about marginals of this distribution over permutations. As such, the search for an appropriate choice model boils down to learning a distribution over permutations that is (near-)consistent with observed information about this distribution. In this work, we pursue a non-parametric approach which seeks to learn a choice model (i.e. a distribution over permutations) with {\em sparsest} possible support, and consistent with observed data. We assume that the data observed consists of noisy information pertaining to the marginals of the choice model we seek to learn. We establish that {\em any} choice model admits a `very' sparse approximation in the sense that there exists a choice model whose support is small relative to the dimension of the observed data and whose marginals approximately agree with the observed marginal information. We further show that under, what we dub, `signature' conditions, such a sparse approximation can be found in a computationally efficiently fashion relative to a brute force approach. An empirical study using the American Psychological Association election data-set suggests that our approach manages to unearth useful structural properties of the underlying choice model using the sparse approximation found. Our results further suggest that the signature condition is a potential alternative to the recently popularized Restricted Null Space condition for efficient recovery of sparse models.
Tree Exploration for Bayesian RL Exploration
Research in reinforcement learning has produced algorithms for optimal decision making under uncertainty that fall within two main types. The first employs a Bayesian framework, where optimality improves with increased computational time. This is because the resulting planning task takes the form of a dynamic programming problem on a belief tree with an infinite number of states. The second type employs relatively simple algorithm which are shown to suffer small regret within a distribution-free framework. This paper presents a lower bound and a high probability upper bound on the optimal value function for the nodes in the Bayesian belief tree, which are analogous to similar bounds in POMDPs. The bounds are then used to create more efficient strategies for exploring the tree. The resulting algorithms are compared with the distribution-free algorithm UCB1, as well as a simpler baseline algorithm on multi-armed bandit problems.