Not enough data to create a plot.
Try a different view from the menu above.
Country
A Dynamical Systems Approach for Static Evaluation in Go
In the paper arguments are given why the concept of static evaluation has the potential to be a useful extension to Monte Carlo tree search. A new concept of modeling static evaluation through a dynamical system is introduced and strengths and weaknesses are discussed. The general suitability of this approach is demonstrated.
Biomimetic use of genetic algorithms
Genetic algorithms are considered as an original way to solve problems, probably because of their generality and of their "blind" nature. But GAs are also unusual since the features of many implementations (among all that could be thought of) are principally led by the biological metaphor, while efficiency measurements intervene only afterwards. We propose here to examine the relevance of these biomimetic aspects, by pointing out some fundamental similarities and divergences between GAs and the genome of living beings shaped by natural selection. One of the main differences comes from the fact that GAs rely principally on the so-called implicit parallelism, while giving to the mutation/selection mechanism the second role. Such differences could suggest new ways of employing GAs on complex problems, using complex codings and starting from nearly homogeneous populations.
Solving puzzles described in English by automated translation to answer set programming and learning how to do that translation
We present a system capable of automatically solving combinatorial logic puzzles given in (simplified) English. It involves translating the English descriptions of the puzzles into answer set programming(ASP) and using ASP solvers to provide solutions of the puzzles. To translate the descriptions, we use a lambda-calculus based approach using Probabilistic Combinatorial Categorial Grammars (PCCG) where the meanings of words are associated with parameters to be able to distinguish between multiple meanings of the same word. Meaning of many words and the parameters are learned. The puzzles are represented in ASP using an ontology which is applicable to a large set of logic puzzles.
Ontology Alignment at the Instance and Schema Level
Suchanek, Fabian, Abiteboul, Serge, Senellart, Pierre
We present PARIS, an approach for the automatic alignment of ontologies. PARIS aligns not only instances, but also relations and classes. Alignments at the instance-level cross-fertilize with alignments at the schema-level. Thereby, our system provides a truly holistic solution to the problem of ontology alignment. The heart of the approach is probabilistic. This allows PARIS to run without any parameter tuning. We demonstrate the efficiency of the algorithm and its precision through extensive experiments. In particular, we obtain a precision of around 90% in experiments with two of the world's largest ontologies.
Representations and Techniques for 3D Object Recognition and Scene Interpretation
Hoiem, Derek, Savarese, Silvio
One of the grand challenges of artificial intelligence is to enable computers to interpret 3D scenes and objects from imagery. This book organizes and introduces major concepts in 3D scene and object representation and inference from still images, with a focus on recent efforts to fuse models of geometry and perspective with statistical machine learning. ISBN 9781608457281, 169 pages.
Feature Reinforcement Learning In Practice
Nguyen, Phuong, Sunehag, Peter, Hutter, Marcus
Following a recent surge in using history-based methods for resolving perceptual aliasing in reinforcement learning, we introduce an algorithm based on the feature reinforcement learning framework called PhiMDP. To create a practical algorithm we devise a stochastic search procedure for a class of context trees based on parallel tempering and a specialized proposal distribution. We provide the first empirical evaluation for PhiMDP. Our proposed algorithm achieves superior performance to the classical U-tree algorithm and the recent active-LZ algorithm, and is competitive with MC-AIXI-CTW that maintains a bayesian mixture over all context trees up to a chosen depth.We are encouraged by our ability to compete with this sophisticated method using an algorithm that simply picks one single model, and uses Q-learning on the corresponding MDP. Our PhiMDP algorithm is much simpler, yet consumes less time and memory. These results show promise for our future work on attacking more complex and larger problems.
Stability Conditions for Online Learnability
Ross, Stephane, Bagnell, J. Andrew
Stability is a general notion that quantifies the sensitivity of a learning algorithm's output to small change in the training dataset (e.g. deletion or replacement of a single training sample). Such conditions have recently been shown to be more powerful to characterize learnability in the general learning setting under i.i.d. samples where uniform convergence is not necessary for learnability, but where stability is both sufficient and necessary for learnability. We here show that similar stability conditions are also sufficient for online learnability, i.e. whether there exists a learning algorithm such that under any sequence of examples (potentially chosen adversarially) produces a sequence of hypotheses that has no regret in the limit with respect to the best hypothesis in hindsight. We introduce online stability, a stability condition related to uniform-leave-one-out stability in the batch setting, that is sufficient for online learnability. In particular we show that popular classes of online learners, namely algorithms that fall in the category of Follow-the-(Regularized)-Leader, Mirror Descent, gradient-based methods and randomized algorithms like Weighted Majority and Hedge, are guaranteed to have no regret if they have such online stability property. We provide examples that suggest the existence of an algorithm with such stability condition might in fact be necessary for online learnability. For the more restricted binary classification setting, we establish that such stability condition is in fact both sufficient and necessary. We also show that for a large class of online learnable problems in the general learning setting, namely those with a notion of sub-exponential covering, no-regret online algorithms that have such stability condition exists.
A sticky HDP-HMM with application to speaker diarization
Fox, Emily B., Sudderth, Erik B., Jordan, Michael I., Willsky, Alan S.
We consider the problem of speaker diarization, the problem of segmenting an audio recording of a meeting into temporal segments corresponding to individual speakers. The problem is rendered particularly difficult by the fact that we are not allowed to assume knowledge of the number of people participating in the meeting. To address this problem, we take a Bayesian nonparametric approach to speaker diarization that builds on the hierarchical Dirichlet process hidden Markov model (HDP-HMM) of Teh et al. [J. Amer. Statist. Assoc. 101 (2006) 1566--1581]. Although the basic HDP-HMM tends to over-segment the audio data---creating redundant states and rapidly switching among them---we describe an augmented HDP-HMM that provides effective control over the switching rate. We also show that this augmentation makes it possible to treat emission distributions nonparametrically. To scale the resulting architecture to realistic diarization problems, we develop a sampling algorithm that employs a truncated approximation of the Dirichlet process to jointly resample the full state sequence, greatly improving mixing rates. Working with a benchmark NIST data set, we show that our Bayesian nonparametric architecture yields state-of-the-art speaker diarization results.
Finding Similar/Diverse Solutions in Answer Set Programming
Eiter, Thomas, Erdem, Esra, Erdogan, Halit, Fink, Michael
For some computational problems (e.g., product configuration, planning, diagnosis, query answering, phylogeny reconstruction) computing a set of similar/diverse solutions may be desirable for better decision-making. With this motivation, we studied several decision/optimization versions of this problem in the context of Answer Set Programming (ASP), analyzed their computational complexity, and introduced offline/online methods to compute similar/diverse solutions of such computational problems with respect to a given distance function. All these methods rely on the idea of computing solutions to a problem by means of finding the answer sets for an ASP program that describes the problem. The offline methods compute all solutions in advance using the ASP formulation of the problem with an ASP solver, like Clasp, and then identify similar/diverse solutions using clustering methods. The online methods compute similar/diverse solutions following one of the three approaches: by reformulating the ASP representation of the problem to compute similar/diverse solutions at once using an ASP solver; by computing similar/diverse solutions iteratively (one after other) using an ASP solver; by modifying the search algorithm of an ASP solver to compute similar/diverse solutions incrementally. We modified Clasp to implement the last online method and called it Clasp-NK. In the first two online methods, the given distance function is represented in ASP; in the last one it is implemented in C++. We showed the applicability and the effectiveness of these methods on reconstruction of similar/diverse phylogenies for Indo-European languages, and on several planning problems in Blocks World. We observed that in terms of computational efficiency the last online method outperforms the others; also it allows us to compute similar/diverse solutions when the distance function cannot be represented in ASP.
A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition
Taieb, Souhaib Ben, Bontempi, Gianluca, Atiya, Amir, Sorjamaa, Antti
Multi-step ahead forecasting is still an open challenge in time series forecasting. Several approaches that deal with this complex problem have been proposed in the literature but an extensive comparison on a large number of tasks is still missing. This paper aims to fill this gap by reviewing existing strategies for multi-step ahead forecasting and comparing them in theoretical and practical terms. To attain such an objective, we performed a large scale comparison of these different strategies using a large experimental benchmark (namely the 111 series from the NN5 forecasting competition). In addition, we considered the effects of deseasonalization, input variable selection, and forecast combination on these strategies and on multi-step ahead forecasting at large. The following three findings appear to be consistently supported by the experimental results: Multiple-Output strategies are the best performing approaches, deseasonalization leads to uniformly improved forecast accuracy, and input selection is more effective when performed in conjunction with deseasonalization.