Plotting

 Country


Optimal Coordinated Planning Amongst Self-Interested Agents with Private State

arXiv.org Artificial Intelligence

Consider a multi-agent system in a dynamic and uncertain environment. Each agent's local decision problem is modeled as a Markov decision process (MDP) and agents must coordinate on a joint action in each period, which provides a reward to each agent and causes local state transitions. A social planner knows the model of every agent's MDP and wants to implement the optimal joint policy, but agents are self-interested and have private local state. We provide an incentive-compatible mechanism for eliciting state information that achieves the optimal joint plan in a Markov perfect equilibrium of the induced stochastic game. In the special case in which local problems are Markov chains and agents compete to take a single action in each period, we leverage Gittins allocation indices to provide an efficient factored algorithm and distribute computation of the optimal policy among the agents. Distributed, optimal coordinated learning in a multi-agent variant of the multi-armed bandit problem is obtained as a special case.


How To Grade a Test Without Knowing the Answers --- A Bayesian Graphical Model for Adaptive Crowdsourcing and Aptitude Testing

arXiv.org Artificial Intelligence

We propose a new probabilistic graphical model that jointly models the difficulties of questions, the abilities of participants and the correct answers to questions in aptitude testing and crowdsourcing settings. We devise an active learning/adaptive testing scheme based on a greedy minimization of expected model entropy, which allows a more efficient resource allocation by dynamically choosing the next question to be asked based on the previous responses. We present experimental results that confirm the ability of our model to infer the required parameters and demonstrate that the adaptive testing scheme requires fewer questions to obtain the same accuracy as a static test scenario.


Inference in Hybrid Bayesian Networks Using Mixtures of Gaussians

arXiv.org Artificial Intelligence

The main goal of this paper is to describe a method for exact inference in general hybrid Bayesian networks (BNs) (with a mixture of discrete and continuous chance variables). Our method consists of approximating general hybrid Bayesian networks by a mixture of Gaussians (MoG) BNs. There exists a fast algorithm by Lauritzen-Jensen (LJ) for making exact inferences in MoG Bayesian networks, and there exists a commercial implementation of this algorithm. However, this algorithm can only be used for MoG BNs. Some limitations of such networks are as follows. All continuous chance variables must have conditional linear Gaussian distributions, and discrete chance nodes cannot have continuous parents. The methods described in this paper will enable us to use the LJ algorithm for a bigger class of hybrid Bayesian networks. This includes networks with continuous chance nodes with non-Gaussian distributions, networks with no restrictions on the topology of discrete and continuous variables, networks with conditionally deterministic variables that are a nonlinear function of their continuous parents, and networks with continuous chance variables whose variances are functions of their parents.


Scaling Life-long Off-policy Learning

arXiv.org Artificial Intelligence

We pursue a life-long learning approach to artificial intelligence that makes extensive use of reinforcement learning algorithms. We build on our prior work with general value functions (GVFs) and the Horde architecture. GVFs have been shown able to represent a wide variety of facts about the world's dynamics that may be useful to a long-lived agent (Sutton et al. 2011). We have also previously shown scaling - that thousands of on-policy GVFs can be learned accurately in real-time on a mobile robot (Modayil, White & Sutton 2011). That work was limited in that it learned about only one policy at a time, whereas the greatest potential benefits of life-long learning come from learning about many policies in parallel, as we explore in this paper. Many new challenges arise in this off-policy learning setting. To deal with convergence and efficiency challenges, we utilize the recently introduced GTD({\lambda}) algorithm. We show that GTD({\lambda}) with tile coding can simultaneously learn hundreds of predictions for five simple target policies while following a single random behavior policy, assessing accuracy with interspersed on-policy tests. To escape the need for the tests, which preclude further scaling, we introduce and empirically vali- date two online estimators of the off-policy objective (MSPBE). Finally, we use the more efficient of the two estimators to demonstrate off-policy learning at scale - the learning of value functions for one thousand policies in real time on a physical robot. This ability constitutes a significant step towards scaling life-long off-policy learning.


Output Space Search for Structured Prediction

arXiv.org Artificial Intelligence

We consider a framework for structured prediction based on search in the space of complete structured outputs. Given a structured input, an output is produced by running a time-bounded search procedure guided by a learned cost function, and then returning the least cost output uncovered during the search. This framework can be instantiated for a wide range of search spaces and search procedures, and easily incorporates arbitrary structured-prediction loss functions. In this paper, we make two main technical contributions. First, we define the limited-discrepancy search space over structured outputs, which is able to leverage powerful classification learning algorithms to improve the search space quality. Second, we give a generic cost function learning approach, where the key idea is to learn a cost function that attempts to mimic the behavior of conducting searches guided by the true loss function. Our experiments on six benchmark domains demonstrate that using our framework with only a small amount of search is sufficient for significantly improving on state-of-the-art structured-prediction performance.


MAIES: A Tool for DNA Mixture Analysis

arXiv.org Artificial Intelligence

We describe an expert system, MAIES, developed for analysing forensic identification problems involving DNA mixture traces using quantitative peak area information. Peak area information is represented by conditional Gaussian distributions, and inference based on exact junction tree propagation ascertains whether individuals, whose profiles have been measured, have contributed to the mixture. The system can also be used to predict DNA profiles of unknown contributors by separating the mixture into its individual components. The use of the system is illustrated with an application to a real world example. The system implements a novel MAP (maximum a posteriori) search algorithm that is described in an appendix.


From influence diagrams to multi-operator cluster DAGs

arXiv.org Artificial Intelligence

There exist several architectures to solve influence diagrams using local computations, such as the Shenoy-Shafer, the HUGIN, or the Lazy Propagation architectures. They all extend usual variable elimination algorithms thanks to the use of so-called 'potentials'. In this paper, we introduce a new architecture, called the Multi-operator Cluster DAG architecture, which can produce decompositions with an improved constrained induced-width, and therefore induce potentially exponential gains. Its principle is to benefit from the composite nature of influence diagrams, instead of using uniform potentials, in order to better analyze the problem structure.


Linear Algebra Approach to Separable Bayesian Networks

arXiv.org Artificial Intelligence

Separable Bayesian Networks, or the Influence Model, are dynamic Bayesian Networks in which the conditional probability distribution can be separated into a function of only the marginal distribution of a node's neighbors, instead of the joint distributions. In terms of modeling, separable networks has rendered possible siginificant reduction in complexity, as the state space is only linear in the number of variables on the network, in contrast to a typical state space which is exponential. In this work, We describe the connection between an arbitrary Conditional Probability Table (CPT) and separable systems using linear algebra. We give an alternate proof on the equivalence of sufficiency and separability. We present a computational method for testing whether a given CPT is separable.


Apprenticeship Learning for Model Parameters of Partially Observable Environments

arXiv.org Artificial Intelligence

We consider apprenticeship learning, i.e., having an agent learn a task by observing an expert demonstrating the task in a partially observable environment when the model of the environment is uncertain. This setting is useful in applications where the explicit modeling of the environment is difficult, such as a dialogue system. We show that we can extract information about the environment model by inferring action selection process behind the demonstration, under the assumption that the expert is choosing optimal actions based on knowledge of the true model of the target environment. Proposed algorithms can achieve more accurate estimates of POMDP parameters and better policies from a short demonstration, compared to methods that learns only from the reaction from the environment.


Graphical Condition for Identification in recursive SEM

arXiv.org Artificial Intelligence

The paper concerns the problem of predicting the effect of actions or interventions on a system from a combination of (i) statistical data on a set of observed variables, and (ii) qualitative causal knowledge encoded in the form of a directed acyclic graph (DAG). The DAG represents a set of linear equations called Structural Equations Model (SEM), whose coefficients are parameters representing direct causal effects. Reliable quantitative conclusions can only be obtained from the model if the causal effects are uniquely determined by the data. That is, if there exists a unique parametrization for the model that makes it compatible with the data. If this is the case, the model is called identified. The main result of the paper is a general sufficient condition for identification of recursive SEM models.