Not enough data to create a plot.
Try a different view from the menu above.
Country
Functional Interactions Between Memory and Recognition Judgments
Li, Justin (University of Michigan) | Derbinsky, Nate (University of Michigan) | Laird, John (University of Michigan)
One issue facing agents that accumulate large bodies of knowledge is determining whether they have knowl- edge that is relevant to its current goals. Performing comprehensive searches of long-term memory in every situation can be computationally expensive and disrup- tive to task reasoning. In this paper, we demonstrate that the recognition judgment โ a heuristic for whether memory structures have been previously perceived โ can serve as a low-cost indicator of the existence of potentially relevant knowledge. We present an approach for computing both context-dependent and context- independent recognition judgments using processes and data shared with declarative memories. We then de- scribe an initial, efficient implementation in the Soar cognitive architecture and evaluate our system in a word sense disambiguation task, showing that it reduces the number of memory searches without degrading agent performance.
Modeling Context Aware Dynamic Trust Using Hidden Markov Model
Liu, Xin (รcole Polytechnique Fรฉdรฉrale de Lausanne EPFL) | Datta, Anwitaman (Nanyang Technological University)
Modeling trust in complex dynamic environments is an important yet challenging issue since an intelligent agent may strategically change its behavior to maximize its profits. In thispaper, we propose a context aware trust model to predict dynamic trust by using a Hidden Markov Model (HMM) to model an agent's interactions. Although HMMs have already been applied in the past to model an agent's dynamic behavior to greatly improve the traditional static probabilistic trust approaches, most HMM based trust models only focus on outcomes of the past interactions without considering interaction context, which we believe, reflects immensely on the dynamic behavior or intent of an agent. Interaction contextual information is comprehensively studied and integrated into the model to more precisely approximate an agent's dynamic behavior. Evaluation using real auction data and synthetic data demonstrates the efficacy of our approach in comparison with previous state-of-the-art trust mechanisms.
Efficient Approximate Value Iteration for Continuous Gaussian POMDPs
Berg, Jur van den (University of Utah) | Patil, Sachin (University of North Carolina at Chapel Hill) | Alterovitz, Ron (University of North Carolina at Chapel Hill)
We introduce a highly efficient method for solving continuous partially-observable Markov decision processes (POMDPs) in which beliefs can be modeled using Gaussian distributions over the state space. Our method enables fast solutions to sequential decision making under uncertainty for a variety of problems involving noisy or incomplete observations and stochastic actions. We present an efficient approach to compute locally-valid approximations to the value function over continuous spaces in time polynomial (O[n^4]) in the dimension n of the state space. To directly tackle the intractability of solving general POMDPs, we leverage the assumption that beliefs are Gaussian distributions over the state space, approximate the belief update using an extended Kalman filter (EKF), and represent the value function by a function that is quadratic in the mean and linear in the variance of the belief. Our approach iterates towards a linear control policy over the state space that is locally-optimal with respect to a user defined cost function, and is approximately valid in the vicinity of a nominal trajectory through belief space. We demonstrate the scalability and potential of our approach on problems inspired by robot navigation under uncertainty for state spaces of up to 128 dimensions.
Security Games with Limited Surveillance
An, Bo (University of Southern California) | Kempe, David (University of Southern California) | Kiekintveld, Christopher (University of Texas, El Paso) | Shieh, Eric (University of Southern California) | Singh, Satinder (University of Michigan) | Tambe, Milind (University of Southern California) | Vorobeychik, Yevgeniy (Sandia National Laboratories)
Randomized first-mover strategies of Stackelberg games are used in several deployed applications to allocate limited resources for the protection of critical infrastructure. Stackelberg games model the fact that a strategic attacker can surveil and exploit the defender's strategy, and randomization guards against the worst effects by making the defender less predictable. In accordance with the standard game-theoretic model of Stackelberg games, past work has typically assumed that the attacker has perfect knowledge of the defender's randomized strategy and will react correspondingly. In light of the fact that surveillance is costly, risky, and delays an attack, this assumption is clearly simplistic: attackers will usually act on partial knowledge of the defender's strategies. The attacker's imperfect estimate could present opportunities and possibly also threats to a strategic defender. In this paper, we therefore begin a systematic study of security games with limited surveillance. We propose a natural model wherein an attacker forms or updates a belief based on observed actions, and chooses an optimal response. We investigate the model both theoretically and experimentally. In particular, we give mathematical programs to compute optimal attacker and defender strategies for a fixed observation duration, and show how to use them to estimate the attacker's observation durations. Our experimental results show that the defender can achieve significant improvement in expected utility by taking the attacker's limited surveillance into account, validating the motivation of our work.
A Distributed Approach to Summarizing Spaces of Multiagent Schedules
Jr., James Calvin Boerkoel (University of Michigan) | Durfee, Edmund H. (University of Michigan)
We introduce the Multiagent Disjunctive Temporal Problem (MaDTP), a new distributed formulation of the widely-adopted Disjunctive Temporal Problem (DTP) representation. An agent that generates a summary of all viable schedules, rather than a single schedule, can be more useful in dynamic environments. We show how a (Ma)DTP with the properties of minimality and decomposability provides a particularly efficacious solution space summary.However, in the multiagent case, these properties sacrifice an agent's strategic interests while incurring significant computational overhead. We introduce a new property called local decomposability that exploits loose-coupling between agents' problems, protects strategic interests, and supports typical queries. We provide and evaluate a new distributed algorithm that summarizes agents' solution spaces in significantly less time and space by using local, rather than full, decomposability.
POMDPs Make Better Hackers: Accounting for Uncertainty in Penetration Testing
Sarraute, Carlos (Core Security and ITBA) | Buffet, Olivier (INRIA and Universitรฉ de Lorraine) | Hoffmann, Jรถrg (Saarland University)
Penetration Testing is a methodology for assessing network security, by generating and executing possible hacking attacks. Doing so automatically allows for regular and systematic testing. A key question is how to generate the attacks. This is naturally formulated as planning under uncertainty, i.e., under incomplete knowledge about the network configuration. Previous work uses classical planning, and requires costly pre-processes reducing this uncertainty by extensive application of scanning methods. By contrast, we herein model the attack planning problem in terms of partially observable Markov decision processes (POMDP). This allows to reason about the knowledge available, and to intelligently employ scanning actions as part of the attack. As one would expect, this accurate solution does not scale. We devise a method that relies on POMDPs to find good attacks on individual machines, which are then composed into an attack on the network as a whole. This decomposition exploits network structure to the extent possible, making targeted approximations (only) where needed. Evaluating this method on a suitably adapted industrial test suite, we demonstrate its effectiveness in both runtime and solution quality.
Fine-Grained Photovoltaic Output Prediction Using a Bayesian Ensemble
Chakraborty, Prithwish (Virginia Tech) | Marwah, Manish (HP Labs) | Arlitt, Martin (HP Labs) | Ramakrishnan, Naren ( Virginia Tech )
Local and distributed power generation is increasingly relianton renewable power sources, e.g., solar (photovoltaic or PV) andwind energy. The integration of such sources into the power grid ischallenging, however, due to their variable and intermittent energyoutput. To effectively use them on alarge scale, it is essential to be able to predict power generation at afine-grained level. We describe a novel Bayesian ensemble methodologyinvolving three diverse predictors. Each predictor estimates mixingcoefficients for integrating PV generation output profiles but capturesfundamentally different characteristics. Two of them employ classicalparameterized (naive Bayes) and non-parametric (nearest neighbor) methods tomodel the relationship between weather forecasts and PV output. The thirdpredictor captures the sequentiality implicit in PV generation and uses motifsmined from historical data to estimate the most likely mixture weights usinga stream prediction methodology. We demonstrate the success and superiority of ourmethods on real PV data from two locations that exhibit diverse weatherconditions. Predictions from our model can be harnessed to optimize schedulingof delay tolerant workloads, e.g., in a data center.
Cooperative Virtual Power Plant Formation Using Scoring Rules
Robu, Valentin (University of Southampton) | Kota, Ramachandra (Secure Meters Ltd., Winchester) | Chalkiadakis, Georgios (Technical University of Crete) | Rogers, Alex (University of Southampton) | Jennings, Nicholas R. (University of Southampton)
Virtual Power Plants (VPPs) are fast emerging as a suitable means of integrating small and distributed energy resources (DERs), like wind and solar, into the electricity supply network (Grid). VPPs are formed via the aggregation of a large number of such DERs, so that they exhibit the characteristics of a traditional generator in terms of predictability and robustness. In this work, we promote the formation of such "cooperative'' VPPs (CVPPs) using multi-agent technology. In particular, we design a payment mechanism that encourages DERs to join CVPPs with large overall production. Our method is based on strictly proper scoring rules and incentivises the provision of accurate predictions from the CVPPs---and in turn, the member DERs---which aids in the planning of the supply schedule at the Grid. We empirically evaluate our approach using the real-world setting of 16 commercial wind farms in the UK. We show that our mechanism incentivises real DERs to form CVPPs, and outperforms the current state of the art payment mechanism developed for this problem.
Opportunities and Challenges for Constraint Programming
O' (University College Cork) | Sullivan, Barry
Constraint programming has become an important technology for solving hard combinatorial problems in a diverse range of application domains. It has its roots in artificial intelligence, mathematical programming, op- erations research, and programming languages. This paper gives a perspective on where constraint programming is today, and discusses a number of opportunities and challenges that could provide focus for the research community into the future.