Not enough data to create a plot.
Try a different view from the menu above.
Country
Approximate Counting of Graphical Models Via MCMC Revisited
In Pe\~na (2007), MCMC sampling is applied to approximately calculate the ratio of essential graphs (EGs) to directed acyclic graphs (DAGs) for up to 20 nodes. In the present paper, we extend that work from 20 to 31 nodes. We also extend that work by computing the approximate ratio of connected EGs to connected DAGs, of connected EGs to EGs, and of connected DAGs to DAGs. Furthermore, we prove that the latter ratio is asymptotically 1. We also discuss the implications of these results for learning DAGs from data.
Gaussian Process Conditional Copulas with Applications to Financial Time Series
Hernández-Lobato, José Miguel, Lloyd, James Robert, Hernández-Lobato, Daniel
The estimation of dependencies between multiple variables is a central problem in the analysis of financial time series. A common approach is to express these dependencies in terms of a copula function. Typically the copula function is assumed to be constant but this may be inaccurate when there are covariates that could have a large influence on the dependence structure of the data. To account for this, a Bayesian framework for the estimation of conditional copulas is proposed. In this framework the parameters of a copula are non-linearly related to some arbitrary conditioning variables. We evaluate the ability of our method to predict time-varying dependencies on several equities and currencies and observe consistent performance gains compared to static copula models and other time-varying copula methods.
Algorithms of the LDA model [REPORT]
Špeh, Jaka, Muhič, Andrej, Rupnik, Jan
We review three algorithms for Latent Dirichlet Allocation (LDA). Two of them are variational inference algorithms: Variational Bayesian inference and Online Variational Bayesian inference and one is Markov Chain Monte Carlo (MCMC) algorithm -- Collapsed Gibbs sampling. We compare their time complexity and performance. We find that online variational Bayesian inference is the fastest algorithm and still returns reasonably good results.
Challenges in Representation Learning: A report on three machine learning contests
Goodfellow, Ian J., Erhan, Dumitru, Carrier, Pierre Luc, Courville, Aaron, Mirza, Mehdi, Hamner, Ben, Cukierski, Will, Tang, Yichuan, Thaler, David, Lee, Dong-Hyun, Zhou, Yingbo, Ramaiah, Chetan, Feng, Fangxiang, Li, Ruifan, Wang, Xiaojie, Athanasakis, Dimitris, Shawe-Taylor, John, Milakov, Maxim, Park, John, Ionescu, Radu, Popescu, Marius, Grozea, Cristian, Bergstra, James, Xie, Jingjing, Romaszko, Lukasz, Xu, Bing, Chuang, Zhang, Bengio, Yoshua
The ICML 2013 Workshop on Challenges in Representation Learning focused on three challenges: the black box learning challenge, the facial expression recognition challenge, and the multimodal learning challenge. We describe the datasets created for these challenges and summarize the results of the competitions. We provide suggestions for organizers of future challenges and some comments on what kind of knowledge can be gained from machine learning competitions.
Dimensionality Detection and Integration of Multiple Data Sources via the GP-LVM
Barrett, James, Coolen, Anthony C. C.
The Gaussian Process Latent Variable Model (GP-LVM) is a non-linear probabilistic method of embedding a high dimensional dataset in terms low dimensional `latent' variables. In this paper we illustrate that maximum a posteriori (MAP) estimation of the latent variables and hyperparameters can be used for model selection and hence we can determine the optimal number or latent variables and the most appropriate model. This is an alternative to the variational approaches developed recently and may be useful when we want to use a non-Gaussian prior or kernel functions that don't have automatic relevance determination (ARD) parameters. Using a second order expansion of the latent variable posterior we can marginalise the latent variables and obtain an estimate for the hyperparameter posterior. Secondly, we use the GP-LVM to integrate multiple data sources by simultaneously embedding them in terms of common latent variables. We present results from synthetic data to illustrate the successful detection and retrieval of low dimensional structure from high dimensional data. We demonstrate that the integration of multiple data sources leads to more robust performance. Finally, we show that when the data are used for binary classification tasks we can attain a significant gain in prediction accuracy when the low dimensional representation is used.
A Counterexample for the Validity of Using Nuclear Norm as a Convex Surrogate of Rank
Zhang, Hongyang, Lin, Zhouchen, Zhang, Chao
Rank minimization has attracted a lot of attention due to its robustness in data recovery. To overcome the computational difficulty, rank is often replaced with nuclear norm. For several rank minimization problems, such a replacement has been theoretically proven to be valid, i.e., the solution to nuclear norm minimization problem is also the solution to rank minimization problem. Although it is easy to believe that such a replacement may not always be valid, no concrete example has ever been found. We argue that such a validity checking cannot be done by numerical computation and show, by analyzing the noiseless latent low rank representation (LatLRR) model, that even for very simple rank minimization problems the validity may still break down. As a by-product, we find that the solution to the nuclear norm minimization formulation of LatLRR is non-unique. Hence the results of LatLRR reported in the literature may be questionable.
Solving Weighted Voting Game Design Problems Optimally: Representations, Synthesis, and Enumeration
de Keijzer, Bart, Klos, Tomas B., Zhang, Yingqian
We study the inverse power index problem for weighted voting games: the problem of finding a weighted voting game in which the power of the players is as close as possible to a certain target distribution. Our goal is to find algorithms that solve this problem exactly. Thereto, we study various subclasses of simple games, and their associated representation methods. We survey algorithms and impossibility results for the synthesis problem, i.e., converting a representation of a simple game into another representation. We contribute to the synthesis problem by showing that it is impossible to compute in polynomial time the list of ceiling coalitions (also known as shift-maximal losing coalitions) of a game from its list of roof coalitions (also known as shift-minimal winning coalitions), and vice versa. Then, we proceed by studying the problem of enumerating the set of weighted voting games. We present first a naive algorithm for this, running in doubly exponential time. Using our knowledge of the synthesis problem, we then improve on this naive algorithm, and we obtain an enumeration algorithm that runs in quadratic exponential time (that is, O(2^(n^2) p(n)) for a polynomial p). Moreover, we show that this algorithm runs in output-polynomial time, making it the best possible enumeration algorithm up to a polynomial factor. Finally, we propose an exact anytime algorithm for the inverse power index problem that runs in exponential time. This algorithm is straightforward and general: it computes the error for each game enumerated, and outputs the game that minimizes this error. By the genericity of our approach, our algorithm can be used to find a weighted voting game that optimizes any exponential time computable function. We implement our algorithm for the case of the normalized Banzhaf index, and we perform experiments in order to study performance and error convergence.
Exchanging OWL 2 QL Knowledge Bases
Arenas, Marcelo, Botoeva, Elena, Calvanese, Diego, Ryzhikov, Vladislav
Knowledge base exchange is an important problem in the area of data exchange and knowledge representation, where one is interested in exchanging information between a source and a target knowledge base connected through a mapping. In this paper, we study this fundamental problem for knowledge bases and mappings expressed in OWL 2 QL, the profile of OWL 2 based on the description logic DL-Lite_R. More specifically, we consider the problem of computing universal solutions, identified as one of the most desirable translations to be materialized, and the problem of computing UCQ-representations, which optimally capture in a target TBox the information that can be extracted from a source TBox and a mapping by means of unions of conjunctive queries. For the former we provide a novel automata-theoretic technique, and complexity results that range from NP to EXPTIME, while for the latter we show NLOGSPACE-completeness.
Evaluation Measures for Hierarchical Classification: a unified view and novel approaches
Kosmopoulos, Aris, Partalas, Ioannis, Gaussier, Eric, Paliouras, Georgios, Androutsopoulos, Ion
Hierarchical classification addresses the problem of classifying items into a hierarchy of classes. An important issue in hierarchical classification is the evaluation of different classification algorithms, which is complicated by the hierarchical relations among the classes. Several evaluation measures have been proposed for hierarchical classification using the hierarchy in different ways. This paper studies the problem of evaluation in hierarchical classification by analyzing and abstracting the key components of the existing performance measures. It also proposes two alternative generic views of hierarchical evaluation and introduces two corresponding novel measures. The proposed measures, along with the state-of-the art ones, are empirically tested on three large datasets from the domain of text classification. The empirical results illustrate the undesirable behavior of existing approaches and how the proposed methods overcome most of these methods across a range of cases.