Plotting

 Country


Possible and Necessary Winner Problem in Social Polls

arXiv.org Artificial Intelligence

Social networks are increasingly being used to conduct polls. We introduce a simple model of such social polling. We suppose agents vote sequentially, but the order in which agents choose to vote is not necessarily fixed. We also suppose that an agent's vote is influenced by the votes of their friends who have already voted. Despite its simplicity, this model provides useful insights into a number of areas including social polling, sequential voting, and manipulation. We prove that the number of candidates and the network structure affect the computational complexity of computing which candidate necessarily or possibly can win in such a social poll. For social networks with bounded treewidth and a bounded number of candidates, we provide polynomial algorithms for both problems. In other cases, we prove that computing which candidates necessarily or possibly win are computationally intractable.


Constraint Propagation as Information Maximization

arXiv.org Artificial Intelligence

This paper draws on diverse areas of computer science to develop a unified view of computation: (1) Optimization in operations research, where a numerical objective function is maximized under constraints, is generalized from the numerical total order to a non-numerical partial order that can be interpreted in terms of information. (2) Relations are generalized so that there are relations of which the constituent tuples have numerical indexes, whereas in other relations these indexes are variables. The distinction is essential in our definition of constraint satisfaction problems. (3) Constraint satisfaction problems are formulated in terms of semantics of conjunctions of atomic formulas of predicate logic. (4) Approximation structures, which are available for several important domains, are applied to solutions of constraint satisfaction problems. As application we treat constraint satisfaction problems over reals. These cover a large part of numerical analysis, most significantly nonlinear equations and inequalities. The chaotic algorithm analyzed in the paper combines the efficiency of floating-point computation with the correctness guarantees of arising from our logico-mathematical model of constraint-satisfaction problems.


Fast Image Scanning with Deep Max-Pooling Convolutional Neural Networks

arXiv.org Artificial Intelligence

Deep Neural Networks now excel at image classification, detection and segmentation. When used to scan images by means of a sliding window, however, their high computational complexity can bring even the most powerful hardware to its knees. We show how dynamic programming can speedup the process by orders of magnitude, even when max-pooling layers are present.


Embedding agents in business applications using enterprise integration patterns

arXiv.org Artificial Intelligence

This paper addresses the issue of integrating agents with a variety of external resources and services, as found in enterprise computing environments. We propose an approach for interfacing agents and existing message routing and mediation engines based on the endpoint concept from the enterprise integration patterns of Hohpe and Woolf. A design for agent endpoints is presented, and an architecture for connecting the Jason agent platform to the Apache Camel enterprise integration framework using this type of endpoint is described. The approach is illustrated by means of a business process use case, and a number of Camel routes are presented. These demonstrate the benefits of interfacing agents to external services via a specialised message routing tool that supports enterprise integration patterns.


Problem-Focused Incremental Elicitation of Multi-Attribute Utility Models

arXiv.org Artificial Intelligence

Decision theory has become widely accepted in the AI community as a useful framework for planning and decision making. Applying the framework typically requires elicitation of some form of probability and utility information. While much work in AI has focused on providing representations and tools for elicitation of probabilities, relatively little work has addressed the elicitation of utility models. This imbalance is not particularly justified considering that probability models are relatively stable across problem instances, while utility models may be different for each instance. Spending large amounts of time on elicitation can be undesirable for interactive systems used in low-stakes decision making and in time-critical decision making. In this paper we investigate the issues of reasoning with incomplete utility models. We identify patterns of problem instances where plans can be proved to be suboptimal if the (unknown) utility function satisfies certain conditions. We present an approach to planning and decision making that performs the utility elicitation incrementally and in a way that is informed by the domain model.


Update Rules for Parameter Estimation in Bayesian Networks

arXiv.org Machine Learning

This paper re-examines the problem of parameter estimation in Bayesian networks with missing values and hidden variables from the perspective of recent work in on-line learning [Kivinen & Warmuth, 1994]. We provide a unified framework for parameter estimation that encompasses both on-line learning, where the model is continuously adapted to new data cases as they arrive, and the more traditional batch learning, where a pre-accumulated set of samples is used in a one-time model selection process. In the batch case, our framework encompasses both the gradient projection algorithm and the EM algorithm for Bayesian networks. The framework also leads to new on-line and batch parameter update schemes, including a parameterized version of EM. We provide both empirical and theoretical results indicating that parameterized EM allows faster convergence to the maximum likelihood parameters than does standard EM.


Models and Selection Criteria for Regression and Classification

arXiv.org Machine Learning

When performing regression or classification, we are interested in the conditional probability distribution for an outcome or class variable Y given a set of explanatoryor input variables X. We consider Bayesian models for this task. In particular, we examine a special class of models, which we call Bayesian regression/classification (BRC) models, that can be factored into independent conditional (y|x) and input (x) models. These models are convenient, because the conditional model (the portion of the full model that we care about) can be analyzed by itself. We examine the practice of transforming arbitrary Bayesian models to BRC models, and argue that this practice is often inappropriate because it ignores prior knowledge that may be important for learning. In addition, we examine Bayesian methods for learning models from data. We discuss two criteria for Bayesian model selection that are appropriate for repression/classification: one described by Spiegelhalter et al. (1993), and another by Buntine (1993). We contrast these two criteria using the prequential framework of Dawid (1984), and give sufficient conditions under which the criteria agree.


An Information-Theoretic Analysis of Hard and Soft Assignment Methods for Clustering

arXiv.org Machine Learning

Assignment methods are at the heart of many algorithms for unsupervised learning and clustering - in particular, the well-known K-means and Expectation-Maximization (EM) algorithms. In this work, we study several different methods of assignment, including the "hard" assignments used by K-means and the ?soft' assignments used by EM. While it is known that K-means minimizes the distortion on the data and EM maximizes the likelihood, little is known about the systematic differences of behavior between the two algorithms. Here we shed light on these differences via an information-theoretic analysis. The cornerstone of our results is a simple decomposition of the expected distortion, showing that K-means (and its extension for inferring general parametric densities from unlabeled sample data) must implicitly manage a trade-off between how similar the data assigned to each cluster are, and how the data are balanced among the clusters. How well the data are balanced is measured by the entropy of the partition defined by the hard assignments. In addition to letting us predict and verify systematic differences between K-means and EM on specific examples, the decomposition allows us to give a rather general argument showing that K ?means will consistently find densities with less "overlap" than EM. We also study a third natural assignment method that we call posterior assignment, that is close in spirit to the soft assignments of EM, but leads to a surprisingly different algorithm.


Myopic Value of Information in Influence Diagrams

arXiv.org Artificial Intelligence

We present a method for calculation of myopic value of information in influence diagrams (Howard & Matheson, 1981) based on the strong junction tree framework (Jensen, Jensen & Dittmer, 1994). The difference in instantiation order in the influence diagrams is reflected in the corresponding junction trees by the order in which the chance nodes are marginalized. This order of marginalization can be changed by table expansion and in effect the same junction tree with expanded tables may be used for calculating the expected utility for scenarios with different instantiation order. We also compare our method to the classic method of modeling different instantiation orders in the same influence diagram.


A Generalized Fellegi-Sunter Framework for Multiple Record Linkage With Application to Homicide Record Systems

arXiv.org Machine Learning

We present a probabilistic method for linking multiple datafiles. This task is not trivial in the absence of unique identifiers for the individuals recorded. This is a common scenario when linking census data to coverage measurement surveys for census coverage evaluation, and in general when multiple record-systems need to be integrated for posterior analysis. Our method generalizes the Fellegi-Sunter theory for linking records from two datafiles and its modern implementations. The multiple record linkage goal is to classify the record K-tuples coming from K datafiles according to the different matching patterns. Our method incorporates the transitivity of agreement in the computation of the data used to model matching probabilities. We use a mixture model to fit matching probabilities via maximum likelihood using the EM algorithm. We present a method to decide the record K-tuples membership to the subsets of matching patterns and we prove its optimality. We apply our method to the integration of three Colombian homicide record systems and we perform a simulation study in order to explore the performance of the method under measurement error and different scenarios. The proposed method works well and opens some directions for future research.