Plotting

 Country


Gamma Processes, Stick-Breaking, and Variational Inference

arXiv.org Artificial Intelligence

While most Bayesian nonparametric models in machine learning have focused on the Dirichlet process, the beta process, or their variants, the gamma process has recently emerged as a useful nonparametric prior in its own right. Current inference schemes for models involving the gamma process are restricted to MCMC-based methods, which limits their scalability. In this paper, we present a variational inference framework for models involving gamma process priors. Our approach is based on a novel stick-breaking constructive definition of the gamma process. We prove correctness of this stick-breaking process by using the characterization of the gamma process as a completely random measure (CRM), and we explicitly derive the rate measure of our construction using Poisson process machinery. We also derive error bounds on the truncation of the infinite process required for variational inference, similar to the truncation analyses for other nonparametric models based on the Dirichlet and beta processes. Our representation is then used to derive a variational inference algorithm for a particular Bayesian nonparametric latent structure formulation known as the infinite Gamma-Poisson model, where the latent variables are drawn from a gamma process prior with Poisson likelihoods. Finally, we present results for our algorithms on nonnegative matrix factorization tasks on document corpora, and show that we compare favorably to both sampling-based techniques and variational approaches based on beta-Bernoulli priors.


Minimax Analysis of Active Learning

arXiv.org Machine Learning

This work establishes distribution-free upper and lower bounds on the minimax label complexity of active learning with general hypothesis classes, under various noise models. The results reveal a number of surprising facts. In particular, under the noise model of Tsybakov (2004), the minimax label complexity of active learning with a VC class is always asymptotically smaller than that of passive learning, and is typically significantly smaller than the best previously-published upper bounds in the active learning literature. In high-noise regimes, it turns out that all active learning problems of a given VC dimension have roughly the same minimax label complexity, which contrasts with well-known results for bounded noise. In low-noise regimes, we find that the label complexity is well-characterized by a simple combinatorial complexity measure we call the star number. Interestingly, we find that almost all of the complexity measures previously explored in the active learning literature have worst-case values exactly equal to the star number. We also propose new active learning strategies that nearly achieve these minimax label complexities.


Fast Prediction with SVM Models Containing RBF Kernels

arXiv.org Machine Learning

We present an approximation scheme for support vector machine models that use an RBF kernel. A second-order Maclaurin series approximation is used for exponentials of inner products between support vectors and test instances. The approximation is applicable to all kernel methods featuring sums of kernel evaluations and makes no assumptions regarding data normalization. The prediction speed of approximated models no longer relates to the amount of support vectors but is quadratic in terms of the number of input dimensions. If the number of input dimensions is small compared to the amount of support vectors, the approximated model is significantly faster in prediction and has a smaller memory footprint. An optimized C++ implementation was made to assess the gain in prediction speed in a set of practical tests. We additionally provide a method to verify the approximation accuracy, prior to training models or during run-time, to ensure the loss in accuracy remains acceptable and within known bounds.


Probit Normal Correlated Topic Models

arXiv.org Machine Learning

The logistic normal distribution has recently been adapted via the transformation of multivariate Gaus- sian variables to model the topical distribution of documents in the presence of correlations among topics. In this paper, we propose a probit normal alternative approach to modelling correlated topical structures. Our use of the probit model in the context of topic discovery is novel, as many authors have so far con- centrated solely of the logistic model partly due to the formidable inefficiency of the multinomial probit model even in the case of very small topical spaces. We herein circumvent the inefficiency of multinomial probit estimation by using an adaptation of the diagonal orthant multinomial probit in the topic models context, resulting in the ability of our topic modelling scheme to handle corpuses with a large number of latent topics. An additional and very important benefit of our method lies in the fact that unlike with the logistic normal model whose non-conjugacy leads to the need for sophisticated sampling schemes, our ap- proach exploits the natural conjugacy inherent in the auxiliary formulation of the probit model to achieve greater simplicity. The application of our proposed scheme to a well known Associated Press corpus not only helps discover a large number of meaningful topics but also reveals the capturing of compellingly intuitive correlations among certain topics. Besides, our proposed approach lends itself to even further scalability thanks to various existing high performance algorithms and architectures capable of handling millions of documents.


Linear State-Space Model with Time-Varying Dynamics

arXiv.org Machine Learning

This paper introduces a linear state-space model with time-varying dynamics. The time dependency is obtained by forming the state dynamics matrix as a time-varying linear combination of a set of matrices. The time dependency of the weights in the linear combination is modelled by another linear Gaussian dynamical model allowing the model to learn how the dynamics of the process changes. Previous approaches have used switching models which have a small set of possible state dynamics matrices and the model selects one of those matrices at each time, thus jumping between them. Our model forms the dynamics as a linear combination and the changes can be smooth and more continuous. The model is motivated by physical processes which are described by linear partial differential equations whose parameters vary in time. An example of such a process could be a temperature field whose evolution is driven by a varying wind direction. The posterior inference is performed using variational Bayesian approximation. The experiments on stochastic advection-diffusion processes and real-world weather processes show that the model with time-varying dynamics can outperform previously introduced approaches.


Cortical spatio-temporal dimensionality reduction for visual grouping

arXiv.org Machine Learning

The visual systems of many mammals, including humans, is able to integrate the geometric information of visual stimuli and to perform cognitive tasks already at the first stages of the cortical processing. This is thought to be the result of a combination of mechanisms, which include feature extraction at single cell level and geometric processing by means of cells connectivity. We present a geometric model of such connectivities in the space of detected features associated to spatio-temporal visual stimuli, and show how they can be used to obtain low-level object segmentation. The main idea is that of defining a spectral clustering procedure with anisotropic affinities over datasets consisting of embeddings of the visual stimuli into higher dimensional spaces. Neural plausibility of the proposed arguments will be discussed.


Mapping Energy Landscapes of Non-Convex Learning Problems

arXiv.org Machine Learning

In many statistical learning problems, the target functions to be optimized are highly non-convex in various model spaces and thus are difficult to analyze. In this paper, we compute \emph{Energy Landscape Maps} (ELMs) which characterize and visualize an energy function with a tree structure, in which each leaf node represents a local minimum and each non-leaf node represents the barrier between adjacent energy basins. The ELM also associates each node with the estimated probability mass and volume for the corresponding energy basin. We construct ELMs by adopting the generalized Wang-Landau algorithm and multi-domain sampler that simulates a Markov chain traversing the model space by dynamically reweighting the energy function. We construct ELMs in the model space for two classic statistical learning problems: i) clustering with Gaussian mixture models or Bernoulli templates; and ii) bi-clustering. We propose a way to measure the difficulties (or complexity) of these learning problems and study how various conditions affect the landscape complexity, such as separability of the clusters, the number of examples, and the level of supervision; and we also visualize the behaviors of different algorithms, such as K-mean, EM, two-step EM and Swendsen-Wang cuts, in the energy landscapes.


Deep Directed Generative Autoencoders

arXiv.org Machine Learning

For discrete data, the likelihood $P(x)$ can be rewritten exactly and parametrized into $P(X = x) = P(X = x | H = f(x)) P(H = f(x))$ if $P(X | H)$ has enough capacity to put no probability mass on any $x'$ for which $f(x')\neq f(x)$, where $f(\cdot)$ is a deterministic discrete function. The log of the first factor gives rise to the log-likelihood reconstruction error of an autoencoder with $f(\cdot)$ as the encoder and $P(X|H)$ as the (probabilistic) decoder. The log of the second term can be seen as a regularizer on the encoded activations $h=f(x)$, e.g., as in sparse autoencoders. Both encoder and decoder can be represented by a deep neural network and trained to maximize the average of the optimal log-likelihood $\log p(x)$. The objective is to learn an encoder $f(\cdot)$ that maps $X$ to $f(X)$ that has a much simpler distribution than $X$ itself, estimated by $P(H)$. This "flattens the manifold" or concentrates probability mass in a smaller number of (relevant) dimensions over which the distribution factorizes. Generating samples from the model is straightforward using ancestral sampling. One challenge is that regular back-propagation cannot be used to obtain the gradient on the parameters of the encoder, but we find that using the straight-through estimator works well here. We also find that although optimizing a single level of such architecture may be difficult, much better results can be obtained by pre-training and stacking them, gradually transforming the data distribution into one that is more easily captured by a simple parametric model.


Dictionary learning for fast classification based on soft-thresholding

arXiv.org Machine Learning

Classifiers based on sparse representations have recently been shown to provide excellent results in many visual recognition and classification tasks. However, the high cost of computing sparse representations at test time is a major obstacle that limits the applicability of these methods in large-scale problems, or in scenarios where computational power is restricted. We consider in this paper a simple yet efficient alternative to sparse coding for feature extraction. We study a classification scheme that applies the soft-thresholding nonlinear mapping in a dictionary, followed by a linear classifier. A novel supervised dictionary learning algorithm tailored for this low complexity classification architecture is proposed. The dictionary learning problem, which jointly learns the dictionary and linear classifier, is cast as a difference of convex (DC) program and solved efficiently with an iterative DC solver. We conduct experiments on several datasets, and show that our learning algorithm that leverages the structure of the classification problem outperforms generic learning procedures. Our simple classifier based on soft-thresholding also competes with the recent sparse coding classifiers, when the dictionary is learned appropriately. The adopted classification scheme further requires less computational time at the testing stage, compared to other classifiers. The proposed scheme shows the potential of the adequately trained soft-thresholding mapping for classification and paves the way towards the development of very efficient classification methods for vision problems.


Regulatory Cross Cutting with Artificial Intelligence and Imported Seafood

#artificialintelligence

Since 2019 the FDA's crosscutting work has implemented artificial intelligence (AI) as part of the its New Era of Smarter Food Safety initiative. This new application of available data sources can strengthen the agency's public health mission with the goal using AI to improve capabilities to quickly and efficiently identify products that may pose a threat to public health by impeding their entry into the U.S. market. On February 8 the FDA reported the initiation of their succeeding phase for AI activity with the Imported Seafood Pilot program. Running from February 1 through July 31, 2021, the pilot will allow FDA to study and evaluate the utility of AI in support of import targeting, ultimately assisting with the implementation of an AI model to target high-risk seafood products--a critical strategy, as the United States imports nearly 94% of its seafood, according to the FDA. Where in the past, reliance on human intervention and/or trend analysis drove scrutiny of seafood shipments such as field exams, label exams or laboratory analysis of samples, with the use of AI technologies, FDA surveillance and regulatory efforts might be improved.