Plotting

 Country


Fast Algorithms for Large-State-Space HMMs with Applications to Web Usage Analysis

Neural Information Processing Systems

In applying Hidden Markov Models to the analysis of massive data streams, it is often necessary to use an artificially reduced set of states; this is due in large part to the fact that the basic HMM estimation algorithms have a quadratic dependence on the size of the state set. We present algorithms that reduce this computational bottleneck to linear or near-linear time, when the states can be embedded in an underlying grid of parameters. This type of state representation arises in many domains; in particular, we show an application to traffic analysis at a high-volume Web site.


Kernels for Structured Natural Language Data

Neural Information Processing Systems

In this paper, we focus on tasks in the application areas of NLP, such as Machine Translation, Text Summarization, Text Categorization and Question Answering.


An MCMC-Based Method of Comparing Connectionist Models in Cognitive Science

Neural Information Processing Systems

Despite the popularity of connectionist models in cognitive science, their performance can often be difficult to evaluate. Inspired by the geometric approach to statistical model selection, we introduce a conceptually similar method to examine the global behavior of a connectionist model, by counting the number and types of response patterns it can simulate. The Markov Chain Monte Carlo-based algorithm that we constructed รžnds these patterns efficiently. We demonstrate the approach using two localist network models of speech perception.


Application of SVMs for Colour Classification and Collision Detection with AIBO Robots

Neural Information Processing Systems

This article addresses the issues of colour classification and collision detection asthey occur in the legged league robot soccer environment of RoboCup. We show how the method of one-class classification with support vectormachines (SVMs) can be applied to solve these tasks satisfactorily usingthe limited hardware capacity of the prescribed Sony AIBO quadruped robots. The experimental evaluation shows an improvement over our previous methods of ellipse fitting for colour classification and the statistical approach used for collision detection.


On the Dynamics of Boosting

Neural Information Processing Systems

In order to understand AdaBoost's dynamics, especially its ability to maximize margins, we derive an associated simplified nonlinear iterated map and analyze its behavior in low-dimensional cases. We find stable cycles for these cases, which can explicitly be used to solve for Ada-Boost's output. By considering AdaBoost as a dynamical system, we are able to prove Rรคtsch and Warmuth's conjecture that AdaBoost may fail to converge to a maximal-margin combined classifier when given a'nonoptimal' weaklearning algorithm.


Perception of the Structure of the Physical World Using Unknown Multimodal Sensors and Effectors

Neural Information Processing Systems

Is there a way for an algorithm linked to an unknown body to infer by itself information about this body and the world it is in? Taking the case of space for example, is there a way for this algorithm to realize that its body is in a three dimensional world? Is it possible for this algorithm to discover how to move in a straight line? And more basically: do these questions make any sense at all given that the algorithm only has access to the very high-dimensional data consisting of its sensory inputs and motor outputs? We demonstrate in this article how these questions can be given a positive answer. We show that it is possible to make an algorithm that, by analyzing thelaw that links its motor outputs to its sensory inputs, discovers information about the structure of the world regardless of the devices constituting the body it is linked to. We present results from simulations demonstrating a way to issue motor orders resulting in "fundamental" movements of the body as regards the structure of the physical world.


A Holistic Approach to Compositional Semantics: a connectionist model and robot experiments

Neural Information Processing Systems

We present a novel connectionist model for acquiring the semantics of a simple language through the behavioral experiences of a real robot. We focus on the "compositionality" of semantics, a fundamental characteristic of human language, which is the ability to understand the meaning of a sentence as a combination of the meanings of words. We also pay much attention to the "embodiment" of a robot, which means that the robot should acquire semantics which matches its body, or sensory-motor system. The essential claim is that an embodied compositional semantic representation can be self-organized from generalized correspondences between sentences and behavioral patterns. This claim is examined and confirmed through simple experiments in which a robot generates corresponding behaviors from unlearned sentences by analogy with the correspondences between learned sentences and behaviors.


Unsupervised Context Sensitive Language Acquisition from a Large Corpus

Neural Information Processing Systems

We describe a pattern acquisition algorithm that learns, in an unsupervised fashion, a streamlined representation of linguistic structures from a plain natural-language corpus. This paper addresses the issues of learning structured knowledge from a large-scale natural language data set, and of generalization to unseen text. The implemented algorithm represents sentences as paths on a graph whose vertices are words (or parts of words). Significant patterns, determined by recursive context-sensitive statistical inference, form new vertices. Linguistic constructions are represented by trees composed of significant patterns and their associated equivalence classes. An input module allows the algorithm to be subjected to a standard test of English as a Second Language (ESL) proficiency. The results are encouraging: the model attains a level of performance considered to be "intermediate" for 9th-grade students, despite having been trained on a corpus (CHILDES) containing transcribed speech of parents directed to small children.


Laplace Propagation

Neural Information Processing Systems

We present a novel method for approximate inference in Bayesian models and regularized risk functionals. It is based on the propagation of mean and variance derived from the Laplace approximation of conditional probabilities in factorizing distributions, much akin to Minka's Expectation Propagation. In the jointly normal case, it coincides with the latter and belief propagation, whereas in the general case, it provides an optimization strategy containing Support Vector chunking, the Bayes Committee Machine, and Gaussian Process chunking as special cases.


AUC Optimization vs. Error Rate Minimization

Neural Information Processing Systems

The area under an ROC curve (AUC) is a criterion used in many applications to measure the quality of a classification algorithm. However, the objective function optimized in most of these algorithms is the error rate and not the AUC value. We give a detailed statistical analysis of the relationship between the AUC and the error rate, including the first exact expression of the expected value and the variance of the AUC for a fixed error rate. Our results show that the average AUC is monotonically increasing as a function of the classification accuracy, but that the standard deviation for uneven distributions and higher error rates is noticeable. Thus, algorithms designed to minimize the error rate may not lead to the best possible AUC values. We show that, under certain conditions, the global function optimized by the RankBoost algorithm is exactly the AUC. We report the results of our experiments with RankBoost in several datasets demonstrating the benefits of an algorithm specifically designed to globally optimize the AUC over other existing algorithms optimizing an approximation of the AUC or only locally optimizing the AUC.